(a) If the wavelength of this wave function (in radians) equals the de Broglie wavelength of the electron, and its velocity, v = 8.40 × 10² m/sec, what is the value of k (in nm-¹)? Express your answer in scientific notation with three significant figures. (b) The Hamiltonian operator for a free electron is given by ħ² d² Ĥ = ô² 2me 2m dx² The wave function provided at the top is an eigenstate of Â. If one measures the energy for an electron in this state using π, what would be the result, and how does it compare to the classical kinetic energy of a free electron with this velocity? =

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A free electron moving along the x-direction (one for which V(x) = 0) would have a wave
function of the form
f(x) = A eikx + B e−ikx
where A and B are constants.
(a) If the wavelength of this wave function (in radians) equals the de Broglie wavelength of
the electron, and its velocity, v = 8.40 × 10² m/sec, what is the value of k (in nm¯¹)?
Express your answer in scientific notation with three significant figures.
(b) The Hamiltonian operator for a free electron is given by
p²
ħ² d²
Ĥ
2me
2me dx²
The wave function provided at the top is an eigenstate of Â. If one measures the energy
for an electron in this state using Â, what would be the result, and how does it compare
to the classical kinetic energy of a free electron with this velocity?
Transcribed Image Text:A free electron moving along the x-direction (one for which V(x) = 0) would have a wave function of the form f(x) = A eikx + B e−ikx where A and B are constants. (a) If the wavelength of this wave function (in radians) equals the de Broglie wavelength of the electron, and its velocity, v = 8.40 × 10² m/sec, what is the value of k (in nm¯¹)? Express your answer in scientific notation with three significant figures. (b) The Hamiltonian operator for a free electron is given by p² ħ² d² Ĥ 2me 2me dx² The wave function provided at the top is an eigenstate of Â. If one measures the energy for an electron in this state using Â, what would be the result, and how does it compare to the classical kinetic energy of a free electron with this velocity?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Bosons and Fermions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON