Part B The same system is being used as in part a but this time the mass m is being pulled down with a force as can be seen in the figure below. Find the equation of motion for this system where m is the mass, k is the stiffness of the spring, x is the displacement and t is the time.
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
Part B
The same system is being used as in part a but this time the mass m is being pulled down with a force as can be seen in the figure below. Find the equation of motion for this system where m is the mass, k is the stiffness of the spring, x is the displacement and t is the time.
Step by step
Solved in 6 steps
hi the simple solution below was this taken directly from a book?