Part A A certain first-order reaction (A-→products) has a rate constant of 3.60x10-3s at 45 °C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. ble Hinle)
Part A A certain first-order reaction (A-→products) has a rate constant of 3.60x10-3s at 45 °C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. ble Hinle)
Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
Related questions
Question
![I Review | Constants | Periodic Table
The half-life of a reaction, t12, is the time it takes
for the reactant concentration [A to decrease by
half. For example, after one half-life the
concentration falls from the initial concentration
[A]o to [A]o/2, after a second half-life to [A]o/4:
after a third half-life to Alo /8, and so on. on.
Value
min
Submit
Part B
A certain second-order reaction (B→products) has a rate constant of 1.80x103 M-s-1 at 27°C and an
initial half-life of 246 s. What is the concentration of the reactant B after one half-life?
Express your answer with the appropriate units.
• View Available Hint(s)
HA
Value
M
國](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F370ea171-8bb9-4b07-85c5-04ae9f865ef9%2F2f3f1175-a18d-44ab-b3ec-e3693374b7d6%2Fvlsgjc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:I Review | Constants | Periodic Table
The half-life of a reaction, t12, is the time it takes
for the reactant concentration [A to decrease by
half. For example, after one half-life the
concentration falls from the initial concentration
[A]o to [A]o/2, after a second half-life to [A]o/4:
after a third half-life to Alo /8, and so on. on.
Value
min
Submit
Part B
A certain second-order reaction (B→products) has a rate constant of 1.80x103 M-s-1 at 27°C and an
initial half-life of 246 s. What is the concentration of the reactant B after one half-life?
Express your answer with the appropriate units.
• View Available Hint(s)
HA
Value
M
國
![Review | Constants | Periodic Table
The half-life of a reaction, t1/2. is the time it takes
for the reactant concentration A to decrease by
half. For example, after one half-life the
concentration falls from the initial concentration
[A]o to [A]o/2, after a second half-life to [A]o/4;
after a third half-life to [Ao/8, and so on. on.
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant
concentration. It is expressed as
0.693
t1/2
For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and
so is expressed as
t1/2 =
Part A
A certain first-order reaction (A→products) has a rate constant of 3.60x103s at 45 °C. How many
minutes does it take for the concentration of the reactant, A, to drop to 6.25% of the original concentration?
Express your answer with the appropriate units.
> View Available Hint(s)
HA
Value
min](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F370ea171-8bb9-4b07-85c5-04ae9f865ef9%2F2f3f1175-a18d-44ab-b3ec-e3693374b7d6%2Flqxj0ai_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Review | Constants | Periodic Table
The half-life of a reaction, t1/2. is the time it takes
for the reactant concentration A to decrease by
half. For example, after one half-life the
concentration falls from the initial concentration
[A]o to [A]o/2, after a second half-life to [A]o/4;
after a third half-life to [Ao/8, and so on. on.
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant
concentration. It is expressed as
0.693
t1/2
For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and
so is expressed as
t1/2 =
Part A
A certain first-order reaction (A→products) has a rate constant of 3.60x103s at 45 °C. How many
minutes does it take for the concentration of the reactant, A, to drop to 6.25% of the original concentration?
Express your answer with the appropriate units.
> View Available Hint(s)
HA
Value
min
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning

Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning

Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning

Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY