One of the most commonly used terms in criminal investigations is the so-called "DNA" DNA, or deoxyribonucleic acid. It is the fundamental building block for an individual's entire genetic makeup. DNA consists of two long polymers of simple units called nucleotides, with backbones made of sugars and phosphate groups joined by ester bonds. These two strands run in opposite directions to each other and are therefore anti-parallel. Attached to each sugar is one of four types of molecules called bases. It is the sequence of these four bases along the backbone that encodes information. This information is read using the genetic code, which specifies the sequence of the amino acids within proteins. The code is read by copying stretches of DNA into the related nucleic_ acid RNA, in a process called transcription. Nucleobases (or nucleotide bases/nitrogenaus bases) are the parts of DNA and RNA that may be involved in pairing). The primary nucleobasęs are cytosine (C), guanine (G), adenine (A), and thymine (T), and uracíl (UT.They are usually simply called bases in genetics. Because A, G, C, and T appear in the DNA, these molecules are called DNA-bases; A, G, C, and U are called RNA-bases. For this example, let us consider the DNA bases, A, G, C, and T. Suppose one of these four bases must be selected three times to form a linear triplet, how many different triplets are possible3 Note that all four bases can be selected for each of the three components of the triplet.
Nucleotides
It is an organic molecule made up of three basic components- a nitrogenous base, phosphate,and pentose sugar. The nucleotides are important for metabolic reactions andthe formation of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid).
Nucleic Acids
Nucleic acids are essential biomolecules present in prokaryotic and eukaryotic cells and viruses. They carry the genetic information for the synthesis of proteins and cellular replication. The nucleic acids are of two types: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The structure of all proteins and ultimately every biomolecule and cellular component is a product of information encoded in the sequence of nucleic acids. Parts of a DNA molecule containing the information needed to synthesize a protein or an RNA are genes. Nucleic acids can store and transmit genetic information from one generation to the next, fundamental to any life form.
Step by step
Solved in 2 steps