ollowing equilibrium: 2NO(g) + Cl₂ (g). 2NOCI (g) AG=-41. KJ Now suppose a reaction vessel is filled with 0.507 atm of chlorine (Cl₂) and 8.33 atm of nitrosyl chloride (NOCI) at 766. °C. Answer the following questions about this system: Conside Under these conditions, will the pressure of Cl₂ tend to rise or fall? Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of Cl₂ will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of Cl₂ will tend to fall, can that be changed to a tendency to rise by adding NO? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. O rise O fall O yes O no T atmi X

Chemistry for Engineering Students
4th Edition
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Lawrence S. Brown, Tom Holme
Chapter12: Chemical Equilibrium
Section: Chapter Questions
Problem 12.116PAE
icon
Related questions
Question

Pp.28.

Subject  :- Chemistry 

ollowing equilibrium:
2NO(g) + Cl₂(g) 2NOCI (g)
AG=-41. KJ
Now suppose a reaction vessel is filled with 0.507 atm of chlorine (C1₂) and 8.33 atm of nitrosyl chloride (NOCI) at 766. °C. Answer the
following questions about this system:
Conside
Under these conditions, will the pressure of Cl₂ tend to rise or fall?
Is it possible to reverse this tendency by adding NO?
In other words, if you said the pressure of Cl₂ will tend to rise, can that be
changed to a tendency to fall by adding NO? Similarly, if you said the
pressure of Cl₂ will tend to fall, can that be changed to a tendency to rise
by adding NO?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO needed to reverse it.
Round your answer to 2 significant digits.
O rise
O fall
O yes
O no
atm
X
Transcribed Image Text:ollowing equilibrium: 2NO(g) + Cl₂(g) 2NOCI (g) AG=-41. KJ Now suppose a reaction vessel is filled with 0.507 atm of chlorine (C1₂) and 8.33 atm of nitrosyl chloride (NOCI) at 766. °C. Answer the following questions about this system: Conside Under these conditions, will the pressure of Cl₂ tend to rise or fall? Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of Cl₂ will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of Cl₂ will tend to fall, can that be changed to a tendency to rise by adding NO? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. O rise O fall O yes O no atm X
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
World of Chemistry, 3rd edition
World of Chemistry, 3rd edition
Chemistry
ISBN:
9781133109655
Author:
Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:
Brooks / Cole / Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning