Next SEVEN questions are based on the following regression model       To determine the impact of variations in price on sales the management of Big Bob's Burger Barn sets different prices in its burger joints in 75 stores located in different cities. Using the sales and price data, a simple regression is run with sales (in thousands of dollars) as the dependent variable and price (in dollars) as the independent variable. Use the following calculations and the accompanying regression summary output to answer questions 23-30.                           ∑xy = 32847.68 x̅ = 5.6872               ∑x² = 2445.707 y̅ = 77.3747               n = 75                                       SUMMARY OUTPUT                   Regression Statistics                   Multiple R                     R Square                     Adjusted R Square 0.3829626                 Standard Error                   Observations 75                                       ANOVA                       df SS MS F Significance F           Regression       46.927903 1.97E-09           Residual                     Total   3115.482                                           Coefficients Standard Error t Stat P-value Lower 95% Upper 95%       Intercept     6.5262907 18.678324 1.588E-29 108.89329 134.90705       PRICE         1.97E-09                               23 The numerator of the formula to find the slope coefficient in the regression equation is ______   a -148.312                   b -155.728                   c -163.514                   d -171.690                                         24 The model predicts that when raising the price by $1, sales would change by $_______ thousand.   a -7.830                   b -8.417                   c -9.048                   d -9.727                                         25 The predicted sales for a price of $6.00 per burger is $ _______ thousand.       a 71.358                   b 74.926                   c 78.672                   d 82.605                                         26 Given that   ∑(ŷ − y̅)² = 1219.091               the sample data show that _______ fraction of variations is sales is explained by price.     a 0.254                   b 0.316                   c 0.391                   d 0.485                                         27 The regression result shows the observed sales deviate from the predicted sales, on average, by $ _______ thousand.           a 4.110                   b 5.097                   c 6.320                   d 7.837                                         28 The standard error of the slope coefficient b₁ is ________.           a 0.627                   b 0.847                   c 1.143                   d 1.543                                         29 The test statistic for the null hypothesis that a change in price has no impact on sales is:     a -6.851                   b 5.481                   c -4.385                   d 3.508                                         30 The margin of error for a 95% interval estimate for the population slope parameter is:     a 4.449                   b 3.559                   c 2.847                   d 2.278

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
Next SEVEN questions are based on the following regression model      
To determine the impact of variations in price on sales the management of Big Bob's Burger Barn sets different prices in its burger joints in 75 stores located in different cities.
Using the sales and price data, a simple regression is run with sales (in thousands of dollars) as the dependent variable and price (in dollars) as the independent variable.
Use the following calculations and the accompanying regression summary output to answer questions 23-30.
                     
    ∑xy = 32847.68 x̅ = 5.6872          
    ∑x² = 2445.707 y̅ = 77.3747          
    n = 75              
                     
  SUMMARY OUTPUT                
  Regression Statistics                
  Multiple R                  
  R Square                  
  Adjusted R Square 0.3829626              
  Standard Error                
  Observations 75              
                     
  ANOVA                  
    df SS MS F Significance F        
  Regression       46.927903 1.97E-09        
  Residual                  
  Total   3115.482              
                     
      Coefficients Standard Error t Stat P-value Lower 95% Upper 95%    
  Intercept     6.5262907 18.678324 1.588E-29 108.89329 134.90705    
  PRICE         1.97E-09        
                     
23 The numerator of the formula to find the slope coefficient in the regression equation is ______  
a -148.312                  
b -155.728                  
c -163.514                  
d -171.690                  
                     
24 The model predicts that when raising the price by $1, sales would change by $_______ thousand.  
a -7.830                  
b -8.417                  
c -9.048                  
d -9.727                  
                     
25 The predicted sales for a price of $6.00 per burger is $ _______ thousand.      
a 71.358                  
b 74.926                  
c 78.672                  
d 82.605                  
                     
26 Given that   ∑(ŷ − y̅)² = 1219.091            
  the sample data show that _______ fraction of variations is sales is explained by price.    
a 0.254                  
b 0.316                  
c 0.391                  
d 0.485                  
                     
27 The regression result shows the observed sales deviate from the predicted sales, on average, by
$ _______ thousand.
   
     
a 4.110                  
b 5.097                  
c 6.320                  
d 7.837                  
                     
28 The standard error of the slope coefficient b₁ is ________.          
a 0.627                  
b 0.847                  
c 1.143                  
d 1.543                  
                     
29 The test statistic for the null hypothesis that a change in price has no impact on sales is:    
a -6.851                  
b 5.481                  
c -4.385                  
d 3.508                  
                     
30 The margin of error for a 95% interval estimate for the population slope parameter is:    
a 4.449                  
b 3.559                  
c 2.847                  
d 2.278                  
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman