n this situation, a 90 degree elbow pipe is used to direct water flow in an upwards direction, at a rate of 40 kg/s. Here the diameter of the elbow is 10cm. The water is discharged into the atmosphere and the pressure at exit is at the local atmospheric pressure. Additionally the elevation difference between the centers of exit and inlet of the bend is 50cm. Here, the weight of the elbow pipe and the water is neglible, and the momentum-flux correction factor is 1.03 at both the oulet and inlet. How would I determine the gage pressure at the center of the inlet of the elbow? How much anchoring force would be needed to hole the elbow in place.
In this situation, a 90 degree elbow pipe is used to direct water flow in an upwards direction, at a rate of 40 kg/s. Here the diameter of the elbow is 10cm. The water is discharged into the atmosphere and the pressure at exit is at the local atmospheric pressure. Additionally the elevation difference between the centers of exit and inlet of the bend is 50cm. Here, the weight of the elbow pipe and the water is neglible, and the momentum-flux correction factor is 1.03 at both the oulet and inlet. How would I determine the gage pressure at the center of the inlet of the elbow? How much anchoring force would be needed to hole the elbow in place.
Any help would be greatly appreciated :)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images