= MMB 241- Tutorial 1.pdf 1/3 80% + + MMB 241 - Dynamics of Particles Tutorial 1 Topic: Kinematics of Particles:- Displacement, velocity and acceleration of particles. QUESTIONS 1. If v = (4t+5) m/s, where t is in seconds, determine a when t = 2 s. 2. If s = (2t³) m, where t is in seconds, determine v when t = 2 s. 3. If a = 2 m/s², determine v at s = 4 m if v = 3 m/s at s = 0. 4. If a = 4 m/s², determines when t = 3 s if v = 2 m/s and s = 2 m when t=0. 5. A particle moves along a straight line such that its position is defined by s = (t² - 6t + 5) m. Determine the average velocity, the average speed, and the acceleration of the particle when t = 6 s. 6. A particle is moving with a velocity of vo when s=0 and t=0. If it is subjected to a deceleration of a = -kv³ where k is a constant, determine its velocity and position as functions of time. 7. A particle travels along a straight-line path such that in 4s it moves from an initial position SA = -8 m to a position SB = +3 m. Then in another 5 s it moves from SB to sc = -6 m. Determine the particle's average velocity and average speed during the 9-s time interval. 8. The acceleration of a rocket traveling upward is given by a = (6+0.02s) m/s² where s is in meters. Determine the time needed for the rocket to reach an altitude of s = 100 m. Initially, v = 0 and s=0 when t=0. 9. Draw the s-t and a-t graphs if s=0 when t=0 v (m/s) 4 v = 21 2 t(s)
= MMB 241- Tutorial 1.pdf 1/3 80% + + MMB 241 - Dynamics of Particles Tutorial 1 Topic: Kinematics of Particles:- Displacement, velocity and acceleration of particles. QUESTIONS 1. If v = (4t+5) m/s, where t is in seconds, determine a when t = 2 s. 2. If s = (2t³) m, where t is in seconds, determine v when t = 2 s. 3. If a = 2 m/s², determine v at s = 4 m if v = 3 m/s at s = 0. 4. If a = 4 m/s², determines when t = 3 s if v = 2 m/s and s = 2 m when t=0. 5. A particle moves along a straight line such that its position is defined by s = (t² - 6t + 5) m. Determine the average velocity, the average speed, and the acceleration of the particle when t = 6 s. 6. A particle is moving with a velocity of vo when s=0 and t=0. If it is subjected to a deceleration of a = -kv³ where k is a constant, determine its velocity and position as functions of time. 7. A particle travels along a straight-line path such that in 4s it moves from an initial position SA = -8 m to a position SB = +3 m. Then in another 5 s it moves from SB to sc = -6 m. Determine the particle's average velocity and average speed during the 9-s time interval. 8. The acceleration of a rocket traveling upward is given by a = (6+0.02s) m/s² where s is in meters. Determine the time needed for the rocket to reach an altitude of s = 100 m. Initially, v = 0 and s=0 when t=0. 9. Draw the s-t and a-t graphs if s=0 when t=0 v (m/s) 4 v = 21 2 t(s)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter5: Analysis Of Convection Heat Transfer
Section: Chapter Questions
Problem 5.18P: The drag on an airplane wing in flight is known to be a function of the density of air (), the...
Related questions
Question
![=
MMB 241- Tutorial 1.pdf
1/3
80%
+ +
MMB 241 - Dynamics of Particles
Tutorial 1
Topic: Kinematics of Particles:- Displacement, velocity and acceleration of particles.
QUESTIONS
1. If v = (4t+5) m/s, where t is in seconds, determine a when t = 2 s.
2. If s = (2t³) m, where t is in seconds, determine v when t = 2 s.
3. If a = 2 m/s², determine v at s = 4 m if v = 3 m/s at s = 0.
4. If a = 4 m/s², determines when t = 3 s if v = 2 m/s and s = 2 m when t=0.
5. A particle moves along a straight line such that its position is defined by s = (t² - 6t + 5) m.
Determine the average velocity, the average speed, and the acceleration of the particle
when t = 6 s.
6. A particle is moving with a velocity of vo when s=0 and t=0. If it is subjected to a
deceleration of a = -kv³ where k is a constant, determine its velocity and position as
functions of time.
7. A particle travels along a straight-line path such that in 4s it moves from an initial position
SA = -8 m to a position SB = +3 m. Then in another 5 s it moves from SB to sc = -6 m.
Determine the particle's average velocity and average speed during the 9-s time interval.
8. The acceleration of a rocket traveling upward is given by a = (6+0.02s) m/s² where s is in
meters. Determine the time needed for the rocket to reach an altitude of s = 100 m. Initially,
v = 0 and s=0 when t=0.
9. Draw the s-t and a-t graphs if s=0 when t=0
v (m/s)
4
v = 21
2
t(s)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2006393e-c97e-4081-8173-0190425f3dd9%2Fcdc6c0d6-f392-4c09-afa4-148c49bbb146%2Fo6fln9p_processed.png&w=3840&q=75)
Transcribed Image Text:=
MMB 241- Tutorial 1.pdf
1/3
80%
+ +
MMB 241 - Dynamics of Particles
Tutorial 1
Topic: Kinematics of Particles:- Displacement, velocity and acceleration of particles.
QUESTIONS
1. If v = (4t+5) m/s, where t is in seconds, determine a when t = 2 s.
2. If s = (2t³) m, where t is in seconds, determine v when t = 2 s.
3. If a = 2 m/s², determine v at s = 4 m if v = 3 m/s at s = 0.
4. If a = 4 m/s², determines when t = 3 s if v = 2 m/s and s = 2 m when t=0.
5. A particle moves along a straight line such that its position is defined by s = (t² - 6t + 5) m.
Determine the average velocity, the average speed, and the acceleration of the particle
when t = 6 s.
6. A particle is moving with a velocity of vo when s=0 and t=0. If it is subjected to a
deceleration of a = -kv³ where k is a constant, determine its velocity and position as
functions of time.
7. A particle travels along a straight-line path such that in 4s it moves from an initial position
SA = -8 m to a position SB = +3 m. Then in another 5 s it moves from SB to sc = -6 m.
Determine the particle's average velocity and average speed during the 9-s time interval.
8. The acceleration of a rocket traveling upward is given by a = (6+0.02s) m/s² where s is in
meters. Determine the time needed for the rocket to reach an altitude of s = 100 m. Initially,
v = 0 and s=0 when t=0.
9. Draw the s-t and a-t graphs if s=0 when t=0
v (m/s)
4
v = 21
2
t(s)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 11 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Principles of Heat Transfer (Activate Learning wi…](https://www.bartleby.com/isbn_cover_images/9781305387102/9781305387102_smallCoverImage.gif)
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning
![Principles of Heat Transfer (Activate Learning wi…](https://www.bartleby.com/isbn_cover_images/9781305387102/9781305387102_smallCoverImage.gif)
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning