Measurements of the elderly are given by playing a block building game to see how tall they can build a tower. One block-building experiment repeated one month later, gave us the times (seconds) of five pairs of participants' completion times. Test the claim that there is a difference between the two experiments. A. At 1%, use the Classical approach & conclude it. B. Use the P-value approach & conclude it. 1st Experiment (A) 35 28 29 26 29 2nd Experiment (B)33 27 27 27 23 . Computing for the estimate of standard error =8 P-value approach: Using the t-distribution, we find the p-value is equal to 0.3899 for the two-tailed test. 0.3899> significant level a/2=0.005, so, one must fail to reject. Additionally, there's not enough evidence to conclude a significant difference in the times between the two experiments.
Measurements of the elderly are given by playing a block building game to see how tall they can build a tower. One block-building experiment repeated one month later, gave us the times (seconds) of five pairs of participants' completion times. Test the claim that there is a difference between the two experiments.
A. At 1%, use the Classical approach & conclude it.
B. Use the P-value approach & conclude it.
1st Experiment (A) 35 28 29 26 29
2nd Experiment (B)33 27 27 27 23 .
Computing for the estimate of standard error =8
P-value approach:
Using the t-distribution, we find the p-value is equal to 0.3899 for the two-tailed test. 0.3899> significant level a/2=0.005, so, one must fail to reject. Additionally, there's not enough evidence to conclude a significant difference in the times between the two experiments.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images