Maximize f = 2x + 9y subject to 9х + бу S 42 -5x + y 2 4 x2 0, у20. (a) State the given problem in a form from which the simplex matrix can be formed (that is, as a maximization problem with < constraints). f = < 42 S-4 х, у 20 (b) Form the simplex matrix. S2 first constraint second constraint objective function Determine the first pivot entry. The first pivot is in row column

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need help figuring these two out !!

**Linear Programming and the Simplex Method**

**Problem Description:**

Maximize \( f = 2x + 9y \) subject to:
- \( 9x + 6y \leq 42 \)
- \(-5x + y \geq 4 \)
- \( x \geq 0, \, y \geq 0 \)

**Instructions:**

(a) **Convert the Constraints:**

Reformulate the second constraint in a form suitable for the Simplex method (as a maximization problem with \(\leq\) constraints).

- Given Objective Function: \( f = \)
- Constraint 1: \( \leq 42 \)
- Constraint 2: \( \leq -4 \)

Ensure \( x, y \geq 0 \).

(b) **Formulate the Simplex Matrix:**

Create the simplex matrix corresponding to the system of inequalities.

|       | \( x \) | \( y \) | \( s_1 \) | \( s_2 \) | \( f \) |
|-------|---------|---------|-----------|-----------|---------|
| First Constraint |         |         |           |           |         |
| Second Constraint |         |         |           |           |         |
| Objective Function |         |         |           |           |         |

Determine the first pivot entry.
- The first pivot is in row ___, column ___.

---

**Minimization Problem Solution:**

**Simplex Matrix** for the minimization problem:

\[
\begin{array}{cccccc|c}
x & y & z & s_1 & s_2 & s_3 & -f \\
\hline
1 & 0 & 0 & 2 & 2 & 0 & 70 \\
0 & 1 & 1 & 1 & 11 & 0 & 16 \\
0 & 0 & 1 & -9 & 11 & 0 & 30 \\
0 & 0 & 0 & 5 & 1 & 2 & -1300 \\
\end{array}
\]

**Solution:**

\( x = \)  
\( y = \)   
\( z = \)  
\( f = \)  

**Note:** Fill in the \( x \), \( y \), \( z \), and \( f \) values after
Transcribed Image Text:**Linear Programming and the Simplex Method** **Problem Description:** Maximize \( f = 2x + 9y \) subject to: - \( 9x + 6y \leq 42 \) - \(-5x + y \geq 4 \) - \( x \geq 0, \, y \geq 0 \) **Instructions:** (a) **Convert the Constraints:** Reformulate the second constraint in a form suitable for the Simplex method (as a maximization problem with \(\leq\) constraints). - Given Objective Function: \( f = \) - Constraint 1: \( \leq 42 \) - Constraint 2: \( \leq -4 \) Ensure \( x, y \geq 0 \). (b) **Formulate the Simplex Matrix:** Create the simplex matrix corresponding to the system of inequalities. | | \( x \) | \( y \) | \( s_1 \) | \( s_2 \) | \( f \) | |-------|---------|---------|-----------|-----------|---------| | First Constraint | | | | | | | Second Constraint | | | | | | | Objective Function | | | | | | Determine the first pivot entry. - The first pivot is in row ___, column ___. --- **Minimization Problem Solution:** **Simplex Matrix** for the minimization problem: \[ \begin{array}{cccccc|c} x & y & z & s_1 & s_2 & s_3 & -f \\ \hline 1 & 0 & 0 & 2 & 2 & 0 & 70 \\ 0 & 1 & 1 & 1 & 11 & 0 & 16 \\ 0 & 0 & 1 & -9 & 11 & 0 & 30 \\ 0 & 0 & 0 & 5 & 1 & 2 & -1300 \\ \end{array} \] **Solution:** \( x = \) \( y = \) \( z = \) \( f = \) **Note:** Fill in the \( x \), \( y \), \( z \), and \( f \) values after
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,