m-1 j=) t is the distribution of Y,? State all the relevant parameters of the evel a test (that is, the rejection region) for testing H₁ : µ; = o when of is unknown and n; is small. ntext of the test in part (b), state the Type I error and give a or the level of significance, a.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Let Y, represent the ith normal population with unknown mean 44, and unknown variance
of for i 1,2. Consider independent random samples, Ya, Y₁2,,Yin, of size ni, from
the ith population with sample mean Y, and sample variance S?=1Σj=1(Y₁j - Y₁².
(a) What is the distribution of Y;? State all the relevant parameters of the distribution.
(b) Find a level a test (that is, the rejection region) for testing Ho : μi = μio versus
Ha: Pipio when of is unknown and n, is small.
(c) In the context of the test in part (b), state the Type I error and give a probability
statement for the level of significance, a.
Transcribed Image Text:Let Y, represent the ith normal population with unknown mean 44, and unknown variance of for i 1,2. Consider independent random samples, Ya, Y₁2,,Yin, of size ni, from the ith population with sample mean Y, and sample variance S?=1Σj=1(Y₁j - Y₁². (a) What is the distribution of Y;? State all the relevant parameters of the distribution. (b) Find a level a test (that is, the rejection region) for testing Ho : μi = μio versus Ha: Pipio when of is unknown and n, is small. (c) In the context of the test in part (b), state the Type I error and give a probability statement for the level of significance, a.
Expert Solution
Step 1: Write the distribution of Yi bar and state its all the relevant parametersWrite the distribution of
Write the distribution of Yi bar and state its all the relevant parametersWrite the distribution of Yi bar and state its all the relevant parameters

Consider the independent random variables, Y subscript i 1 end subscript comma space Y subscript i 2 end subscript comma space. space. space. comma space Y subscript i n subscript i end subscript of size n subscript i from the ith population with sample mean Y with bar on top subscript i and sample variance S subscript i superscript 2 equals fraction numerator 1 over denominator n subscript i minus 1 end fraction sum from j equals 1 to n subscript i of open parentheses Y subscript i j end subscript minus Y with bar on top subscript i close parentheses squared.

(a) 

The distribution of the sample mean Y with bar on top subscript i will have the following parameters:

  • Mean (E open parentheses Y with bar on top subscript i close parentheses): The expected value of will be equal to the population mean, which is .
  • Variance (Var open parentheses Y with bar on top subscript i close parentheses): The variance of  will be equal to the population variance divided by the sample size, i.e., Y with bar on top subscript ifraction numerator sigma subscript i superscript 2 over denominator n subscript i end fraction.
  • Standard deviation (S D open parentheses Y with bar on top subscript i close parentheses): The standard deviation of Y with bar on top subscript i will be the square root of its variance, i.e., 

The distribution of Y with bar on top subscript i is normal distribution since the samples are taken from a normal distribution.

table row cell E open square brackets Y with bar on top subscript i close square brackets end cell equals cell E open square brackets fraction numerator sum from j equals 1 to n subscript i of Y subscript i j end subscript over denominator n subscript i end fraction close square brackets end cell row blank equals cell 1 over n subscript i cross times E open square brackets sum from j equals 1 to n subscript i of Y subscript i j end subscript close square brackets end cell row blank equals cell 1 over n subscript i cross times sum from j equals 1 to n subscript i of E open square brackets Y subscript i j end subscript close square brackets end cell row blank equals cell 1 over n subscript i cross times sum from j equals 1 to n subscript i of mu subscript i end cell row blank equals cell 1 over n subscript i cross times n subscript i mu subscript i end cell row blank equals cell mu subscript i end cell end table

table row cell V a r open square brackets Y with bar on top subscript i close square brackets end cell equals cell V a r open square brackets fraction numerator sum from j equals 1 to n subscript i of Y subscript i j end subscript over denominator n subscript i end fraction close square brackets end cell row blank equals cell 1 over open parentheses n subscript i close parentheses squared cross times V a r open square brackets sum from j equals 1 to n subscript i of Y subscript i j end subscript close square brackets end cell row blank equals cell 1 over open parentheses n subscript i close parentheses squared cross times sum from j equals 1 to n subscript i of V a r open square brackets Y subscript i j end subscript close square brackets end cell row blank equals cell 1 over open parentheses n subscript i close parentheses squared cross times sum from j equals 1 to n subscript i of sigma subscript i superscript 2 end cell row blank equals cell 1 over open parentheses n subscript i close parentheses squared cross times n subscript i sigma subscript i superscript 2 end cell row blank equals cell fraction numerator sigma subscript i superscript 2 over denominator n subscript i end fraction end cell end table

The relevant parameters of the distribution are sample mean is mu subscript i and sample variance is fraction numerator sigma subscript i superscript 2 over denominator n subscript i end fraction.

steps

Step by step

Solved in 4 steps with 43 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman