Limestone stalactites and stalagmites are formed in caves by the following reaction:Ca2 + 1aq2 + 2 HCO3 -1aq2 ¡CaCO31s2 + CO21g2 + H2O1l2If 1 mol of CaCO3 forms at 298 K under 1 atm pressure, the reaction performs 2.47 kJ of P–V work, pushing back the atmosphere as the gaseous CO2 forms. At the same time, 38.95 kJ of heat is absorbed from the environment. What are the values of ΔH and of ΔE for this reaction?
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
Limestone stalactites and stalagmites are formed in caves by the following reaction:
Ca2 + 1aq2 + 2 HCO3 -1aq2 ¡CaCO31s2 + CO21g2 + H2O1l2
If 1 mol of CaCO3 forms at 298 K under 1 atm pressure, the reaction performs 2.47 kJ of P–V work, pushing back the atmosphere as the gaseous CO2 forms. At the same time, 38.95 kJ of heat is absorbed from the environment. What are the values of ΔH and of ΔE for this reaction?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images