Let ~ be the relation on Z defined as follows: For every m, n = Z, 5/(m²-n²). M~ n
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Let ∼ be the relation on Z defined as follows: For every m, n ∈ Z,
m ∼ n ⇐⇒ 5|(m 2 − n 2 ).
We proved previously that ∼ is an equivalence relation.
(a) Show that a ∼ −a for all a ∈ Z.
(b) Show that if a ≡ b (mod 5), then a ∼ b.
(c) Find the equivalence classes of ∼, justifying your answer. Use the results from parts (a) and (b).
![(a) Show that a ~ -a for all a € Z.
(b) Show that if a = b (mod 5), then a ~ b.
(c) Find the equivalence classes of~, justifying your answer.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F546ca3ef-5c41-4b6f-8ba8-1af4930ff657%2Fb6f12547-1081-4f4b-b2a6-354ee1f9545e%2F0ukle08_processed.png&w=3840&q=75)
Transcribed Image Text:(a) Show that a ~ -a for all a € Z.
(b) Show that if a = b (mod 5), then a ~ b.
(c) Find the equivalence classes of~, justifying your answer.
![Let
~
be the relation on Z defined as follows: For every m, n = Z,
5/(m²-n²).
M~ n](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F546ca3ef-5c41-4b6f-8ba8-1af4930ff657%2Fb6f12547-1081-4f4b-b2a6-354ee1f9545e%2Fnue7c9_processed.png&w=3840&q=75)
Transcribed Image Text:Let
~
be the relation on Z defined as follows: For every m, n = Z,
5/(m²-n²).
M~ n
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)