Let the vectors (i, j, k) constitute an orthonormal basis. In terms of this basis, a general basis is: e₁ = 71 + 5ĵ + 5k, e₂ = 7î + 5j + 2k, e3 = 2î + 2) + 7k. Determine the dual basis (e¹, e², e³) of the above general basis in terms of (î, j, k). For vector A = 21 + 7ĵ + 5k, determine its contra-gradient components (A¹, A², A³) and co-gradient components (A1, A2, A3).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Let the vectors \((\mathbf{i}, \mathbf{j}, \mathbf{k})\) constitute an orthonormal basis. In terms of this basis, a general basis is: 
\[
\mathbf{e}_1 = 7\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}, \quad \mathbf{e}_2 = 7\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}, \quad \mathbf{e}_3 = 2\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}.
\]

Determine the dual basis \((\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3)\) of the above general basis in terms of \((\mathbf{i}, \mathbf{j}, \mathbf{k})\).

For vector \(\mathbf{A} = 2\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}\), determine its contra-gradient components \((A^1, A^2, A^3)\) and co-gradient components \((A_1, A_2, A_3)\).
Transcribed Image Text:Let the vectors \((\mathbf{i}, \mathbf{j}, \mathbf{k})\) constitute an orthonormal basis. In terms of this basis, a general basis is: \[ \mathbf{e}_1 = 7\mathbf{i} + 5\mathbf{j} + 5\mathbf{k}, \quad \mathbf{e}_2 = 7\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}, \quad \mathbf{e}_3 = 2\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}. \] Determine the dual basis \((\mathbf{e}^1, \mathbf{e}^2, \mathbf{e}^3)\) of the above general basis in terms of \((\mathbf{i}, \mathbf{j}, \mathbf{k})\). For vector \(\mathbf{A} = 2\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}\), determine its contra-gradient components \((A^1, A^2, A^3)\) and co-gradient components \((A_1, A_2, A_3)\).
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,