= √1 = Let 4] 2 V2 - 2 and 3 = 2 -7 Explain that B = (V1, V2, V3) forms a basis of a 3-dimensional space. Find [u] (the coordinate of u with respect to the basis B) by writing the vector u as a linear combination of 7₁, 72, and 3.
= √1 = Let 4] 2 V2 - 2 and 3 = 2 -7 Explain that B = (V1, V2, V3) forms a basis of a 3-dimensional space. Find [u] (the coordinate of u with respect to the basis B) by writing the vector u as a linear combination of 7₁, 72, and 3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![Let
\[
\mathbf{u} = \begin{bmatrix} 7 \\ 6 \\ 7 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 2 \\ -7 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}.
\]
Explain that \(\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)\) forms a basis of a 3-dimensional space. Find \([\mathbf{u}]_{\mathcal{B}}\) (the coordinate of \(\mathbf{u}\) with respect to the basis \(\mathcal{B}\)) by writing the vector \(\mathbf{u}\) as a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \text{and} \mathbf{v}_3\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3ef06bb3-2d9b-4f27-bb3b-835b443ab608%2F9e9b7c0f-53e9-485e-b8e5-44ddb5395896%2F7f7ejh_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let
\[
\mathbf{u} = \begin{bmatrix} 7 \\ 6 \\ 7 \end{bmatrix}, \quad \mathbf{v}_1 = \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 2 \\ -7 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}.
\]
Explain that \(\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)\) forms a basis of a 3-dimensional space. Find \([\mathbf{u}]_{\mathcal{B}}\) (the coordinate of \(\mathbf{u}\) with respect to the basis \(\mathcal{B}\)) by writing the vector \(\mathbf{u}\) as a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \text{and} \mathbf{v}_3\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Proof of basis
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)