Let B, D be the following two bases of R³: B = D= 0 0 -2 2 a) Find the change of coordinates matrix PDB from the basis B to D. 2 0 -2 }]}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( \mathcal{B}, \mathcal{D} \) be the following two bases of \( \mathbb{R}^3 \):

\[
\mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix} \right\} 
\]

\[
\mathcal{D} = \left\{ \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -4 \\ 1 \end{bmatrix} \right\}
\]

a) Find the change of coordinates matrix \( P_{\mathcal{D} \leftarrow \mathcal{B}} \) from the basis \( \mathcal{B} \) to \( \mathcal{D} \).
Transcribed Image Text:Let \( \mathcal{B}, \mathcal{D} \) be the following two bases of \( \mathbb{R}^3 \): \[ \mathcal{B} = \left\{ \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix} \right\} \] \[ \mathcal{D} = \left\{ \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -4 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -4 \\ 1 \end{bmatrix} \right\} \] a) Find the change of coordinates matrix \( P_{\mathcal{D} \leftarrow \mathcal{B}} \) from the basis \( \mathcal{B} \) to \( \mathcal{D} \).
Enter the matrix \( P_{\mathcal{D} \leftarrow \mathcal{B}} \):

[Input box]

b) Let \(\mathbf{v}\) be a vector in \(\mathbb{R}^3\) whose vector of coordinates relative to the basis \(\mathcal{B}\) is given by

\[
[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix}
\]

Find the vector \([\mathbf{v}]_{\mathcal{D}}\) of coordinates of \(\mathbf{v}\) relative to the basis of \(\mathcal{D}\).

Enter the vector \([\mathbf{v}]_{\mathcal{D}}\) in the form \([c_1, c_2, c_3]\):

[Input box]
Transcribed Image Text:Enter the matrix \( P_{\mathcal{D} \leftarrow \mathcal{B}} \): [Input box] b) Let \(\mathbf{v}\) be a vector in \(\mathbb{R}^3\) whose vector of coordinates relative to the basis \(\mathcal{B}\) is given by \[ [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix} \] Find the vector \([\mathbf{v}]_{\mathcal{D}}\) of coordinates of \(\mathbf{v}\) relative to the basis of \(\mathcal{D}\). Enter the vector \([\mathbf{v}]_{\mathcal{D}}\) in the form \([c_1, c_2, c_3]\): [Input box]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,