Let the function f(x, y, t) = x²-y² = (-) for all real values x, y and t±1. (a) Evaluate f(2,0,3) and f(0, 2, 3). 1-12 (b) Show that f(x, y, 0) = f(y, x, 0) for any values of (x,y). (c) Show that f(x,y,t) = f(y, x, t) for any values of (x, y) and t‡ ±1. (d) Given (x2 y2)(1 + sin(s)) (x g(x, y, s) = 2 - y sin(s))² infos suor 1 — sin(s) for all real values x, y and s +2πk, where k is an integer number, show that g(x, y, s) = g(y, x, s) for any values of (x, y) and s in the domain of g(x, y, s).

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter4: Polynomial And Rational Functions
Section4.5: Rational Functions
Problem 50E
icon
Related questions
Question
Let the function f(x, y, t) = x²-y² = (-) for all real values x, y and t±1.
(a) Evaluate f(2,0,3) and f(0, 2, 3).
1-12
(b) Show that f(x, y, 0) = f(y, x, 0) for any values of (x,y).
(c) Show that f(x,y,t) = f(y, x, t) for any values of (x, y) and t‡ ±1.
(d) Given
(x2 y2)(1 + sin(s))
(x
g(x, y, s)
=
2
- y sin(s))² infos suor
1 — sin(s)
for all real values x, y and s +2πk, where k is an integer number, show that
g(x, y, s) = g(y, x, s) for any values of (x, y) and s in the domain of g(x, y, s).
Transcribed Image Text:Let the function f(x, y, t) = x²-y² = (-) for all real values x, y and t±1. (a) Evaluate f(2,0,3) and f(0, 2, 3). 1-12 (b) Show that f(x, y, 0) = f(y, x, 0) for any values of (x,y). (c) Show that f(x,y,t) = f(y, x, t) for any values of (x, y) and t‡ ±1. (d) Given (x2 y2)(1 + sin(s)) (x g(x, y, s) = 2 - y sin(s))² infos suor 1 — sin(s) for all real values x, y and s +2πk, where k is an integer number, show that g(x, y, s) = g(y, x, s) for any values of (x, y) and s in the domain of g(x, y, s).
Expert Solution
steps

Step by step

Solved in 2 steps with 26 images

Blurred answer