Let T1, T2 be linear transformations given by (;)-( 7: ***) (;))-(- Зх + 5у T1 T2 -2x + 7y ) 5y Find the matrix A such that corresponds T1(T2(x)) = Ax.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let T1, Tbe linear transformations given by... (see image)....

 

Find the matrix A such that.... (see image)

---

# Linear Transformations and Matrices

## Problem Statement

Let \( T_1, T_2 \) be linear transformations given by

\[
T_1 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} 3x + 5y \\ -2x + 7y \end{array} \right)
\]

\[
T_2 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right)
\]

Find the matrix \( A \) such that corresponds \( T_1(T_2(x)) = Ax \).

---

This problem involves finding a matrix that represents the composition of two linear transformations. The goal is to determine a single matrix \( A \) that performs the operation \( T_1 \) after \( T_2 \) has been applied to a vector \( x \).

### Graphical Explanation of Transformations
1. **First Transformation \( T_2 \)**: 
   - The vector \( \begin{bmatrix} x \\ y \end{bmatrix} \) is transformed into \( \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \).
  
2. **Second Transformation \( T_1 \)**:
   - The output from \( T_2 \), which is \( \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \), is then transformed again using \( T_1 \).

### Detailed Steps

1. **Compute \( T_2(x) \)**: 
   For a vector \( \begin{bmatrix} x \\ y \end{bmatrix} \):
   
   \( T_2 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \)

2. **Apply \( T_1 \) to the Result of \( T_2 \)**:
   
   Let \( u
Transcribed Image Text:--- # Linear Transformations and Matrices ## Problem Statement Let \( T_1, T_2 \) be linear transformations given by \[ T_1 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} 3x + 5y \\ -2x + 7y \end{array} \right) \] \[ T_2 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \] Find the matrix \( A \) such that corresponds \( T_1(T_2(x)) = Ax \). --- This problem involves finding a matrix that represents the composition of two linear transformations. The goal is to determine a single matrix \( A \) that performs the operation \( T_1 \) after \( T_2 \) has been applied to a vector \( x \). ### Graphical Explanation of Transformations 1. **First Transformation \( T_2 \)**: - The vector \( \begin{bmatrix} x \\ y \end{bmatrix} \) is transformed into \( \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \). 2. **Second Transformation \( T_1 \)**: - The output from \( T_2 \), which is \( \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \), is then transformed again using \( T_1 \). ### Detailed Steps 1. **Compute \( T_2(x) \)**: For a vector \( \begin{bmatrix} x \\ y \end{bmatrix} \): \( T_2 \left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \left( \begin{array}{c} -2x + 9y \\ 5y \end{array} \right) \) 2. **Apply \( T_1 \) to the Result of \( T_2 \)**: Let \( u
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,