T: R² R³ is a linear transformation for which T hen: T([³])- = 18 T([1]) = 4 and T (1)-[* =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Refer to image below

If \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is a linear transformation for which 

\[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} \]

and 

\[ T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -5 \\ 3 \\ 5 \end{bmatrix} \]

then:

\[ T \left( \begin{bmatrix} 5 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \end{bmatrix} \]
Transcribed Image Text:If \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) is a linear transformation for which \[ T \left( \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} \] and \[ T \left( \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -5 \\ 3 \\ 5 \end{bmatrix} \] then: \[ T \left( \begin{bmatrix} 5 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \\ \boxed{\phantom{x}} \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,