%3D [3 2. If T is a linear transformation with T: R? - R? and T 3 and T 2. find the 2. 11 standard matrix for the linear transformation T.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear algebra review number 1 

**Linear Algebra Homework Questions**

---

**Instructions:**
- Carefully read each question and provide detailed responses.
- Use proper mathematical notation and set theories.
- Show all steps in your workings for full marks.

---

1. **Problem 1:**
   If \( T \) is a linear transformation with \( T:\mathbb{R}^2 \to \mathbb{R}^2 \) and 
   \[
   T \left[ \begin{array}{c} 1 \\ 2 \end{array} \right] = \left[ \begin{array}{c} 5 \\ 2 \end{array} \right] \quad \text{and} \quad T \left[ \begin{array}{c} -3 \\ 1 \end{array} \right] = \left[ \begin{array}{c} 3 \\ 1 \end{array} \right],
   \]
   find the standard matrix for the linear transformation \( T \).

2. **Problem 2:**
    Give the solution set of the equation \( x - 2y + 3z = 12 \) using proper set notation.

3. **Problem 3:**
    Are the vectors 
    \[
    \left[ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} \right], \quad \left[ \begin{array}{c} 2 \\ 3 \\ 1 \end{array} \right], \quad \left[ \begin{array}{c} 2 \\ 5 \\ 2 \end{array} \right]
    \]
    linearly independent? If not, then write a dependency relation.

4. **Problem 4:**
    \( T \) is a linear transformation with \( T: \mathbb{R}^3 \to \mathbb{R}^3 \) defined by
    \[
    T \left( \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] \right) = \left[ \begin{array}{c} x_1 + x_2 - x_3 \\ x_1 - x_2 + x_3 \\ x_1 + x_3 \end{array} \right].
    \]
Transcribed Image Text:**Linear Algebra Homework Questions** --- **Instructions:** - Carefully read each question and provide detailed responses. - Use proper mathematical notation and set theories. - Show all steps in your workings for full marks. --- 1. **Problem 1:** If \( T \) is a linear transformation with \( T:\mathbb{R}^2 \to \mathbb{R}^2 \) and \[ T \left[ \begin{array}{c} 1 \\ 2 \end{array} \right] = \left[ \begin{array}{c} 5 \\ 2 \end{array} \right] \quad \text{and} \quad T \left[ \begin{array}{c} -3 \\ 1 \end{array} \right] = \left[ \begin{array}{c} 3 \\ 1 \end{array} \right], \] find the standard matrix for the linear transformation \( T \). 2. **Problem 2:** Give the solution set of the equation \( x - 2y + 3z = 12 \) using proper set notation. 3. **Problem 3:** Are the vectors \[ \left[ \begin{array}{c} 1 \\ 3 \\ 5 \end{array} \right], \quad \left[ \begin{array}{c} 2 \\ 3 \\ 1 \end{array} \right], \quad \left[ \begin{array}{c} 2 \\ 5 \\ 2 \end{array} \right] \] linearly independent? If not, then write a dependency relation. 4. **Problem 4:** \( T \) is a linear transformation with \( T: \mathbb{R}^3 \to \mathbb{R}^3 \) defined by \[ T \left( \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] \right) = \left[ \begin{array}{c} x_1 + x_2 - x_3 \\ x_1 - x_2 + x_3 \\ x_1 + x_3 \end{array} \right]. \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,