Let T: P3 → R³ be defined by T (a₁ + a₁x + a₂x² + a3x³) and C= {Q.8-8} 1 Given [T Pc(T(u)). = -3 2 0 -4 2 4 0 = 3 -2 ao + 2a₁ - 3a2 + 3a3 2a02a13a2 + az .-ao − 2a₁ + a2 + 3a3. . Let u = −3x + x³, B = {x³, x², x, 1}, 1 {] 1 ‚ use the Fundamental Theorem of Matrix Representations to find ,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Hello!

 

I'm looking for some assistance with the following problem, the steps to solve it are a bit unclear to me.

 

Thanks!

**Transformation in Vector Spaces**

Let's consider a linear transformation \( T : P_3 \to \mathbb{R}^3 \) defined by 

\[
T(a_0 + a_1 x + a_2 x^2 + a_3 x^3) = 
\begin{pmatrix} 
a_0 + 2a_1 - 3a_2 + 3a_3 \\ 
2a_0 - 2a_1 - 3a_2 + a_3 \\ 
-a_0 - 2a_1 + a_2 + 3a_3 
\end{pmatrix}
\]

Additionally, let \(\mathbf{u} = -3x + x^3\), the basis \(\mathcal{B} = \{x^3, x^2, x, 1\}\), and the basis \(\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}\).

Given the matrix representation of the transformation \([T]_{\mathcal{C}}^{\mathcal{B}} = 
\begin{pmatrix} 
3 & -3 & 2 & 1 \\ 
-2 & 0 & -4 & 1 \\ 
2 & 4 & 0 & -3 
\end{pmatrix}\), 

we are to use the Fundamental Theorem of Matrix Representations to find \( P_{\mathcal{C}}(T(\mathbf{u})) \).

\[
P_{\mathcal{C}}(T(\mathbf{u})) = 
\begin{pmatrix} 
\text{Ex: 5} \\ 
\end{pmatrix} 
\]

\[
P_{\mathcal{C}}(T(\mathbf{u})) = 
\begin{pmatrix}
& \\
& \\
& \\
\end{pmatrix} 
\]

The final matrix entry values for \( P_{\mathcal{C}}(T(\mathbf{u})) \) are left to be determined using the indicated theorem and given values. Review the Fundamental The
Transcribed Image Text:**Transformation in Vector Spaces** Let's consider a linear transformation \( T : P_3 \to \mathbb{R}^3 \) defined by \[ T(a_0 + a_1 x + a_2 x^2 + a_3 x^3) = \begin{pmatrix} a_0 + 2a_1 - 3a_2 + 3a_3 \\ 2a_0 - 2a_1 - 3a_2 + a_3 \\ -a_0 - 2a_1 + a_2 + 3a_3 \end{pmatrix} \] Additionally, let \(\mathbf{u} = -3x + x^3\), the basis \(\mathcal{B} = \{x^3, x^2, x, 1\}\), and the basis \(\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}\). Given the matrix representation of the transformation \([T]_{\mathcal{C}}^{\mathcal{B}} = \begin{pmatrix} 3 & -3 & 2 & 1 \\ -2 & 0 & -4 & 1 \\ 2 & 4 & 0 & -3 \end{pmatrix}\), we are to use the Fundamental Theorem of Matrix Representations to find \( P_{\mathcal{C}}(T(\mathbf{u})) \). \[ P_{\mathcal{C}}(T(\mathbf{u})) = \begin{pmatrix} \text{Ex: 5} \\ \end{pmatrix} \] \[ P_{\mathcal{C}}(T(\mathbf{u})) = \begin{pmatrix} & \\ & \\ & \\ \end{pmatrix} \] The final matrix entry values for \( P_{\mathcal{C}}(T(\mathbf{u})) \) are left to be determined using the indicated theorem and given values. Review the Fundamental The
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 15 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,