Let p1 (x) be the interpolating polynomial of f(x) at xo = 4 and x1 = 5. Then, the error term in approximating f(x) by p1(x) is Select one: Оа. Е (в) — (« — 4) (ӕ — 5)f"(е), се (4,5). Ob. f"(c) E (а) — (т — 4)(г — 5) , сЕ (4,5). 2! Ос E (г) — (ӕ — 4)(ӕ — 5) РО се (4,5). 2! O d. E (x) = (x – 4)(x – 5), c E (4, 5). f'(c) 1! O e. E (x) = (x² – 4)(x² – 5), c се (4,5).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let p1 (x) be the interpolating polynomial of f(x) at xo = 4 and x1 = 5. Then, the error term in approximating f(x) by p1(x) is
Select one:
Оа. Е (в) — (« — 4) (ӕ — 5)f"(е), се (4,5).
f"(c)
оь. Е(г) — (ӕ — 4)(ӕ — 5) , с€ (4,5).
2!
Ос E(г) — (ӕ — 4)(г — 5) р"()
2!
се (4,5).
O d. E (x) = (x – 4)(x – 5)9, c E (4, 5).
f'(c)
1!
O e. E (x) = (x² – 4)(x² – 5), c
се (4,5).
Transcribed Image Text:Let p1 (x) be the interpolating polynomial of f(x) at xo = 4 and x1 = 5. Then, the error term in approximating f(x) by p1(x) is Select one: Оа. Е (в) — (« — 4) (ӕ — 5)f"(е), се (4,5). f"(c) оь. Е(г) — (ӕ — 4)(ӕ — 5) , с€ (4,5). 2! Ос E(г) — (ӕ — 4)(г — 5) р"() 2! се (4,5). O d. E (x) = (x – 4)(x – 5)9, c E (4, 5). f'(c) 1! O e. E (x) = (x² – 4)(x² – 5), c се (4,5).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Interpolation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,