What is the domain of each of the following functions in interval notation? Match the functions in the column on the left with ONE interval from the column on the right. There will be leftover answer choices. h(x)= – 3x + 1 A. v g(x) =/3x– 1 6x v (x) = Зх-1 K(x) =/-3x- 1 E. (-00,00) F.

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
icon
Concept explainers
Question
**Domain of Functions in Interval Notation**

**Objective:** Determine the domain for each function and match it with the appropriate interval on the right. Note that there are extra choices.

---

**Functions:**

1. \( h(x) = -3x + 1 \)
2. \( g(x) = \sqrt{3x - 1} \)
3. \( j(x) = \frac{6x}{3x - 1} \)
4. \( k(x) = \sqrt{-3x - 1} \)

---

**Interval Options:**

- A. \(\left[ -\frac{1}{3}, \frac{1}{3} \right]\)
- B. \((-\infty, -\frac{1}{3}]\)
- C. \((-\infty, \frac{1}{3}]\)
- D. \([\frac{1}{3}, \infty)\)
- E. \((-\infty, \infty)\)
- F. \((-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty)\)
- G. \([-\frac{1}{3}, \infty)\)

---

**Explanation:**

- **\( h(x) = -3x + 1 \):** A linear function with no restrictions, so the domain is all real numbers: \( E. \ (-\infty, \infty) \).

- **\( g(x) = \sqrt{3x - 1} \):** The expression inside the square root must be non-negative: \(3x - 1 \geq 0\), so \(x \geq \frac{1}{3}\). Therefore, the domain is: \( D. \ [\frac{1}{3}, \infty) \).

- **\( j(x) = \frac{6x}{3x - 1} \):** Denominator cannot be zero, so \(3x - 1 \neq 0\). Solving gives \(x \neq \frac{1}{3}\), so the domain is all real numbers except \(x = \frac{1}{3}\): \( F. \ (-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty) \).

- **\(
Transcribed Image Text:**Domain of Functions in Interval Notation** **Objective:** Determine the domain for each function and match it with the appropriate interval on the right. Note that there are extra choices. --- **Functions:** 1. \( h(x) = -3x + 1 \) 2. \( g(x) = \sqrt{3x - 1} \) 3. \( j(x) = \frac{6x}{3x - 1} \) 4. \( k(x) = \sqrt{-3x - 1} \) --- **Interval Options:** - A. \(\left[ -\frac{1}{3}, \frac{1}{3} \right]\) - B. \((-\infty, -\frac{1}{3}]\) - C. \((-\infty, \frac{1}{3}]\) - D. \([\frac{1}{3}, \infty)\) - E. \((-\infty, \infty)\) - F. \((-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty)\) - G. \([-\frac{1}{3}, \infty)\) --- **Explanation:** - **\( h(x) = -3x + 1 \):** A linear function with no restrictions, so the domain is all real numbers: \( E. \ (-\infty, \infty) \). - **\( g(x) = \sqrt{3x - 1} \):** The expression inside the square root must be non-negative: \(3x - 1 \geq 0\), so \(x \geq \frac{1}{3}\). Therefore, the domain is: \( D. \ [\frac{1}{3}, \infty) \). - **\( j(x) = \frac{6x}{3x - 1} \):** Denominator cannot be zero, so \(3x - 1 \neq 0\). Solving gives \(x \neq \frac{1}{3}\), so the domain is all real numbers except \(x = \frac{1}{3}\): \( F. \ (-\infty, \frac{1}{3}) \cup (\frac{1}{3}, \infty) \). - **\(
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education