Let F be a C¹ vector field and let W be a symmetric elementary region in R³ with boundary OW = S. Then the Gauss Divergence theorem states that ° ] [₁ F · ds = [ ] [₁, ² (V.F) dV 01/α-1²-1/[@xn-s = /₁² S (V.F) dS = (V x F). dS S F. ds 0 [[ (V x F) · ds = [ F ° / [(V x F) · ds = // ₁ (v dS S °/-BS-[[[ (V.F) ds = (V.F) dV (V.F) dV

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Let F be a C¹ vector field and let W be a symmetric elementary region in R³ with boundary oW = S. Then the Gauss
Divergence theorem states that
· ] [ F · ds = [ ] [ ₁ (v
//
W
(V.F) ds =
(V.F) dV
= [] [₁₂²²
W
Off-Bas
(V x F). dS
of [xx-48= /v-d
(V x F). dS = F. ds
მა
0 [[XF)-8=// /_ FAV
(V x F). dS
.F) dV
W
(V · F) ds = / / / w ( (V.F) dV
Transcribed Image Text:Let F be a C¹ vector field and let W be a symmetric elementary region in R³ with boundary oW = S. Then the Gauss Divergence theorem states that · ] [ F · ds = [ ] [ ₁ (v // W (V.F) ds = (V.F) dV = [] [₁₂²² W Off-Bas (V x F). dS of [xx-48= /v-d (V x F). dS = F. ds მა 0 [[XF)-8=// /_ FAV (V x F). dS .F) dV W (V · F) ds = / / / w ( (V.F) dV
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,