h) Given vector field F (x, y, z) = (2x + 2y + 4z) i + (2y + 2x – 32) j + (2z – 3y + 4x) k. (a) Prove or disprove that f(x, y, z) = x² + y² + z² + 2xy – 3yz + 4xz is a potential function for vector field F. (b) Find f, FdT, where L is a part of the helix x = connecting the points A(3,0, 1) and (-3,0, 2) 3 cos(rt), y = 3sin(at), z = 1+t, 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
h) Given vector field F (x, y, z) = (2x + 2y + 42) i + (2y +2x –.
- 32) +
(2z – 3y + 4x) k.
4.
(a) Prove or disprove that f(x, Y, z) = x² + y² + z² + 2xy – 3yz + 4xz is a potential function for
vector field F.
(b) Find ſ, Fdr, where L is a part of the helix x =
connecting the points A(3,0, 1) and (-3,0, 2)
3 cos (rt), у
= 3 sin(rt), z =1+t, 0 < t < 1,
Transcribed Image Text:h) Given vector field F (x, y, z) = (2x + 2y + 42) i + (2y +2x –. - 32) + (2z – 3y + 4x) k. 4. (a) Prove or disprove that f(x, Y, z) = x² + y² + z² + 2xy – 3yz + 4xz is a potential function for vector field F. (b) Find ſ, Fdr, where L is a part of the helix x = connecting the points A(3,0, 1) and (-3,0, 2) 3 cos (rt), у = 3 sin(rt), z =1+t, 0 < t < 1,
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,