Let an = Let an = 5n100 - 2nn n! + ln(n) 23n+3 +6n 7.8 +15n2 Then lim an = n→∞ Then lim an = n→∞
Let an = Let an = 5n100 - 2nn n! + ln(n) 23n+3 +6n 7.8 +15n2 Then lim an = n→∞ Then lim an = n→∞
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:For each sequence below, determine the limit as \( n \to \infty \). If a limit is infinite, write "\(\infty\)" or "\(-\infty\)".
a) Let \( a_n = \frac{5n^{100} - 2n^n}{n! + \ln(n)} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\)
b) Let \( a_n = \frac{2^{3n+3} + 6^n}{7 \cdot 8^n + 15n^2} \). Then \( \lim_{n \to \infty} a_n = \) \(\underline{\hspace{3cm}}\)
Expert Solution

Step 1
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

