Find the Taylor polynomials of orders n = 0,1,2,3, and 4 about x = x0, and then find the nth Taylor polynomials, P,(x) for the function in sigma notation for f(x) = e; xo = In7 Choose the correct answer. po(x) = 7“, a²(x + In7) 2! P1 (x) = 7"[1 + a(x + In7)], p2(x) = 7" |1+ a(x + In7) + a² (x P3(x) = 7" |1 + a(x + In7) + :+ In7)?, a (x + In7)³ + 2! 3! a²(x + In7)?, a (x + In7)³, a*(x + lIn7)* p4(x) = 7" 1+ a(x + In7) + + 2! 3! 4! 7" a*(x + In7)* Σ Pn(x) = k! k=0 O po(x) = 7“, a²(x – In7)2 p1 (x) = 7" [1 + a(x – In7)], p2(x) = 7" 1+ a(x – In7) + 2! a?(x – In7)?, a*(x – In7)³ 2! P3(x) = 7" 1+ a(x – In7) + + 3! a²(x – In7)² a°(x – In7)³ , a*(x – In7)j P4(x) = 7" 1+ a(x – In7) + 2! 3! 4! 7" a* (x – In7)* Pn(x) = E k! k=0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

please provide what option is the right answer thank you 

Find the Taylor polynomials of orders n = 0,1,2,3, and 4 about x = x0, and then find the nth Taylor polynomials, P,(x) for the
function in sigma notation for
f(x) = e; xo = In7
Choose the correct answer.
po(x) = 7“,
a²(x + In7)
2!
P1 (x) = 7"[1 + a(x + In7)], p2(x) = 7" |1+ a(x + In7) +
a² (x
P3(x) = 7" |1 + a(x + In7) +
:+ In7)?, a (x + In7)³
+
2!
3!
a²(x + In7)?, a (x + In7)³, a*(x + lIn7)*
p4(x) = 7" 1+ a(x + In7) +
+
2!
3!
4!
7" a*(x + In7)*
Σ
Pn(x) =
k!
k=0
O po(x) = 7“,
a²(x – In7)2
p1 (x) = 7" [1 + a(x – In7)], p2(x) = 7" 1+ a(x – In7) +
2!
a?(x – In7)?, a*(x – In7)³
2!
P3(x) = 7" 1+ a(x – In7) +
+
3!
a²(x – In7)² a°(x – In7)³ , a*(x – In7)j
P4(x) = 7" 1+ a(x – In7) +
2!
3!
4!
7" a* (x – In7)*
Pn(x) = E
k!
k=0
Transcribed Image Text:Find the Taylor polynomials of orders n = 0,1,2,3, and 4 about x = x0, and then find the nth Taylor polynomials, P,(x) for the function in sigma notation for f(x) = e; xo = In7 Choose the correct answer. po(x) = 7“, a²(x + In7) 2! P1 (x) = 7"[1 + a(x + In7)], p2(x) = 7" |1+ a(x + In7) + a² (x P3(x) = 7" |1 + a(x + In7) + :+ In7)?, a (x + In7)³ + 2! 3! a²(x + In7)?, a (x + In7)³, a*(x + lIn7)* p4(x) = 7" 1+ a(x + In7) + + 2! 3! 4! 7" a*(x + In7)* Σ Pn(x) = k! k=0 O po(x) = 7“, a²(x – In7)2 p1 (x) = 7" [1 + a(x – In7)], p2(x) = 7" 1+ a(x – In7) + 2! a?(x – In7)?, a*(x – In7)³ 2! P3(x) = 7" 1+ a(x – In7) + + 3! a²(x – In7)² a°(x – In7)³ , a*(x – In7)j P4(x) = 7" 1+ a(x – In7) + 2! 3! 4! 7" a* (x – In7)* Pn(x) = E k! k=0
O po(x) = a",
a²(x – In7)²
P1 (x) = a' [1 + a(x – In7)], p2(x) = a' |1+ a(x – In7) +
2!
a (x – In7), a*(x – In7)³
p3(x)
= a' |1+ a(x – In7) +
2!
3!
a?(x – In7)?, a (x – In7)³, a*(x – In7)*
P4(x) = a' |1+ a(x – In7) +
2!
3!
4!
P2(x) = 5 a** (x – In7)*
k!
k=0
Po(x) = 1,
%3D
a?(x – In7)?
P1(x) = 1 + a(x – In7), p2(x) = 1 + a(x – In7) +
2!
a²(x – In7), a (x – In7)³
p3 (x) = 1+ a(x – In7) +
2!
3!
a?(x – In7)?, a (x – In7), a*(x – In7)*
P4(x) = 1 + a(x – In7) +
2!
3!
4!
a*(x – In7)*
Pn(x) = >:
k!
k=0
po(x) = 7“,
a²x?
P1(x) = 7“[1+ ax], p2(x) = 7" | 1 + ax +
2!
ax? ax³
2!
P3(x) = 7" |1 + ax +
3!
ax?
a²x
+
2!
atx*
P4(x)
= 7" |1 + ax +
3!
4!
7" a*x*
P»(x) = >
k!
k=0
Transcribed Image Text:O po(x) = a", a²(x – In7)² P1 (x) = a' [1 + a(x – In7)], p2(x) = a' |1+ a(x – In7) + 2! a (x – In7), a*(x – In7)³ p3(x) = a' |1+ a(x – In7) + 2! 3! a?(x – In7)?, a (x – In7)³, a*(x – In7)* P4(x) = a' |1+ a(x – In7) + 2! 3! 4! P2(x) = 5 a** (x – In7)* k! k=0 Po(x) = 1, %3D a?(x – In7)? P1(x) = 1 + a(x – In7), p2(x) = 1 + a(x – In7) + 2! a²(x – In7), a (x – In7)³ p3 (x) = 1+ a(x – In7) + 2! 3! a?(x – In7)?, a (x – In7), a*(x – In7)* P4(x) = 1 + a(x – In7) + 2! 3! 4! a*(x – In7)* Pn(x) = >: k! k=0 po(x) = 7“, a²x? P1(x) = 7“[1+ ax], p2(x) = 7" | 1 + ax + 2! ax? ax³ 2! P3(x) = 7" |1 + ax + 3! ax? a²x + 2! atx* P4(x) = 7" |1 + ax + 3! 4! 7" a*x* P»(x) = > k! k=0
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning