Let a E R and the sequence: Ja ;n = 1 x-1+6x-1+ 12xn-1 + 6; n > 2 Xn a)Show that for every n E N; n > 1,this equality take place, Xn b) Calculate the limit af the sequence (Xn)n>1• (а + 2)3" — 2. -
Let a E R and the sequence: Ja ;n = 1 x-1+6x-1+ 12xn-1 + 6; n > 2 Xn a)Show that for every n E N; n > 1,this equality take place, Xn b) Calculate the limit af the sequence (Xn)n>1• (а + 2)3" — 2. -
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Let $\alpha \in \mathbb{R}$ and the sequence:
$$
X_{n}=\left\{\begin{array}{l}
\alpha \quad ; n=1 \\
x_{n-1}^{3}+6 x_{n-1}^{2}+12 x_{n-1}+6 ; n \geqslant 2
\end{array}\right.
$$
a)Show that for every $n \in \mathbb{N} ; n \geqslant 1$,this equality take place, $X_{n}=(a+2)^{{3}^{{n-1}}}-2$.
b) Calculate the limit af the sequence $\left(X_{n}\right)_{n \geqslant 1}$.
Please check the attached picture for details.
I need complete solution with explanation, thanks in advance.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,