Let a E R and the sequence: Ja ;n = 1 x-1+6x-1+ 12xn-1 + 6; n > 2 Xn a)Show that for every n E N; n > 1,this equality take place, Xn b) Calculate the limit af the sequence (Xn)n>1• (а + 2)3" — 2. -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Let $\alpha \in  \mathbb{R}$ and the sequence:
$$
X_{n}=\left\{\begin{array}{l}
\alpha \quad ; n=1 \\
x_{n-1}^{3}+6 x_{n-1}^{2}+12 x_{n-1}+6 ; n \geqslant 2
\end{array}\right.
$$
a)Show that for every $n \in \mathbb{N} ; n \geqslant 1$,this equality take place, $X_{n}=(a+2)^{{3}^{{n-1}}}-2$.
b) Calculate the limit af the sequence $\left(X_{n}\right)_{n \geqslant 1}$.

Please check the attached picture for details.

I need complete solution with explanation, thanks in advance.

Let a E R and the sequence:
Ja ;n = 1
Xn
x-1+6x-1+ 12xn-1 + 6; n > 2
p3
п-1
a)Show that for every n E N; n > 1,this equality
take place, Xn
b) Calculate the limit af the sequence (Xn)n>1•
(а + 2)3" — 2.
-
Transcribed Image Text:Let a E R and the sequence: Ja ;n = 1 Xn x-1+6x-1+ 12xn-1 + 6; n > 2 p3 п-1 a)Show that for every n E N; n > 1,this equality take place, Xn b) Calculate the limit af the sequence (Xn)n>1• (а + 2)3" — 2. -
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,