For A S calculate I+tA+ 0.904837 (-2-6) X 10 -0.200334 X 1.10517 t2 The actual value of e014, to six decimal places, is you plug t = 0.1 into the approximation with no rounding.) X 2 4² +4³: 6 1-t 0 L X 0.904837 -0.200334 t² etAI+tA+ 2 0 1.105170] +3 -A² + What do you get when -A³? (Give six decimal places 6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
solve using matrix exponentials: For A=[(-1,0),(-2,1)] calculate I+tA+t^2/2 A^2 + t^3/6 A^3: [(_,0),(t(-t^2-6) / 3,_)] The actual value of e^(0.1A), to six decimal places, is [(0.904837, 0),(-0.200334, 1.105170)]. What do you get when you plug t = 0.1 into the approximation e^(tA)~~I+tA+t^2/2 A^2 + t^3/6 A^3? (Give six decimal places with no rounding.)
For A
-1 01
-21 calculate I + A+
2-F
1-2-6)
0.904837
-0.200334
X
10
The actual value of e014, to six decimal places, is
you plug t = 0.1 into the approximation etAI+tA+
with no rounding.)
1.10517
+3
224² +4²³:
6
X
1+t-
0
X
0.904837
0
-0.200334 1.105170
t²
+3
24²
What do you get when
A³? (Give six decimal places
Transcribed Image Text:For A -1 01 -21 calculate I + A+ 2-F 1-2-6) 0.904837 -0.200334 X 10 The actual value of e014, to six decimal places, is you plug t = 0.1 into the approximation etAI+tA+ with no rounding.) 1.10517 +3 224² +4²³: 6 X 1+t- 0 X 0.904837 0 -0.200334 1.105170 t² +3 24² What do you get when A³? (Give six decimal places
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,