Let A be an algebra and X C A a subset. Recall that the centraliser of X in A is defined to be == C(X) = {a A | ax = xa for all x = X}. Let U = { (o b) : a, b, c & R} ≤ M₂(R). C as in Question 1. (i) Show that the centraliser of U in M₂(R) is: C(U) = {(o 9 ) ; a € R} . 0 : (ii) Let M=R2, the natural module for U. Show that Endu (M) = R. (iii) Find all one-dimensional submodules of M. (iv) Is MXY for some submodules X, Y of M? (no proof is required for this part.)
Let A be an algebra and X C A a subset. Recall that the centraliser of X in A is defined to be == C(X) = {a A | ax = xa for all x = X}. Let U = { (o b) : a, b, c & R} ≤ M₂(R). C as in Question 1. (i) Show that the centraliser of U in M₂(R) is: C(U) = {(o 9 ) ; a € R} . 0 : (ii) Let M=R2, the natural module for U. Show that Endu (M) = R. (iii) Find all one-dimensional submodules of M. (iv) Is MXY for some submodules X, Y of M? (no proof is required for this part.)
Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter1: Vectors
Section1.1: The Geometry And Algebra Of Vectors
Problem 24EQ
Related questions
Question

Transcribed Image Text:Let A be an algebra and X C A a subset. Recall that the centraliser of X in
A is defined to be
==
C(X) = {a A | ax = xa for all x = X}.
Let
U =
{ (o b) : a, b, c & R} ≤ M₂(R).
C
as in Question 1.
(i) Show that the centraliser of U in M₂(R) is:
C(U) = {(o 9 ) ; a € R} .
0
:
(ii) Let M=R2, the natural module for U. Show that Endu (M) = R.
(iii) Find all one-dimensional submodules of M.
(iv) Is MXY for some submodules X, Y of M? (no proof is required for
this part.)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage