At least one of the answers above is NOT correct. A square matrix A is idempotent if A² = A. Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is Ha subspace of the vector space V? 1. Does H contain the zero vector of V? H contains the zero vector of V 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list [12] [56] and syntax such as [[1,2], [3,4]], [[5,6],[7,8]] for the answer . (Hint: to show that H is not closed under 3 4 7 [13 2 addition, it is sufficient to find two idempotent matrices A and B such that (A + B)² ‡ (A + B).) [[1,0], [0,0]], [[0,0], [0,1]] 6 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, [3 using a comma separated list and syntax such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix A such that (rA) 2 ‡ (rA).) 2,[[1,0], [0,0]] 4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3. H is not a subspace of V
At least one of the answers above is NOT correct. A square matrix A is idempotent if A² = A. Let V be the vector space of all 2 × 2 matrices with real entries. Let H be the set of all 2 × 2 idempotent matrices with real entries. Is Ha subspace of the vector space V? 1. Does H contain the zero vector of V? H contains the zero vector of V 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list [12] [56] and syntax such as [[1,2], [3,4]], [[5,6],[7,8]] for the answer . (Hint: to show that H is not closed under 3 4 7 [13 2 addition, it is sufficient to find two idempotent matrices A and B such that (A + B)² ‡ (A + B).) [[1,0], [0,0]], [[0,0], [0,1]] 6 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, [3 using a comma separated list and syntax such as 2, [[3,4], [5,6]] for the answer 2, (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix A such that (rA) 2 ‡ (rA).) 2,[[1,0], [0,0]] 4. Is H a subspace of the vector space V? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3. H is not a subspace of V
Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN:9781305658004
Author:Ron Larson
Publisher:Ron Larson
Chapter2: Matrices
Section2.CR: Review Exercises
Problem 37CR
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning