Interpret the meaning of the Y-intercept; b0 and the slope b1 in the model.   2. Predict the assessed value for a house whose heating area is 1,750 square feet.   3. Determine the coefficient of determination, r2, and interpret its meaning.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question

Simple Regression Analysis

We want to develop a regression model to predict the assessed value of houses based on the heating area of houses in square feet.  A sample of 15 single-family houses in the Kalamazoo area is selected.  The assessed value in dollars and the heating area of the houses in square feet are recorded and stored in the data set House 3 (in the class Minitab Files folder).  We are not using the Age in years column.

 

House

Assessed Value in $

Heating Area of house in sq ft

Age in years

1

184400

2000

54

2

177400

1710

11.50

3

175700

1450

8.33

4

185900

1760

0.00

5

179100

1930

7.42

6

170400

1200

32

7

175800

1550

16

8

185900

1930

2

9

178500

1590

1.75

10

179200

1500

2.75

11

186700

1900

0.00

12

179300

1390

0.00

13

174500

1540

12.58

14

183800

1890

2.75

15

176800

1590

7.17

 

 

1. Interpret the meaning of the Y-intercept; band the slope b1 in the model.

 

2. Predict the assessed value for a house whose heating area is 1,750 square feet.

 

3. Determine the coefficient of determination, r2, and interpret its meaning.

 

 

Fitted Line Plot
Assessed Value = 151915 + 16.63 Heating Area
%3D
188000
2918.93
R-Sq
R-Sq(adj)
65.9%
63.3%
186000
184000
182000
180000
178000
176000
174000
172000
170000
1100
1200
1300 1400
1500
1600
1700
1800
1900 2000
Heating Area
Regression Analysis: Assessed Value versus Heating Area
Source
DF
Adj SS
Adj MS F-Value P-Value
Regression
1 214374192 214374192
25.16
0.000
Heating Area
1
214374192 214374192
25.16
0.000
Error
13
110761808
8520139
Lack-of-Fit
11
86196808
7836073
0.64
0.748
Pure Error
24565000
12282500
Total
14 325136000
Model Summary
R-sq R-sq(adj) R-sq(pred)
2918.93 65.93%
63.31%
54.98%
Coefficients
Term
Coef SE Coef T-Value P-Value
VIF
Constant
151915
5563
27.31
0.000
Heating Area
16.63
3.32
5.02
0.000
1.00
Regression Equation
Assessed Value
151915 + 16.63 Heating Area
%3D
Prediction
Fit
SE Fit
95% CI
95% PI
181024 808.185 (179278, 182770) (174481, 187567)
Fit
SE Fit
95% CI
95% PI
185182 1350.64 (182264, 188100) (178234, 192130)
Assessed Value
Transcribed Image Text:Fitted Line Plot Assessed Value = 151915 + 16.63 Heating Area %3D 188000 2918.93 R-Sq R-Sq(adj) 65.9% 63.3% 186000 184000 182000 180000 178000 176000 174000 172000 170000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Heating Area Regression Analysis: Assessed Value versus Heating Area Source DF Adj SS Adj MS F-Value P-Value Regression 1 214374192 214374192 25.16 0.000 Heating Area 1 214374192 214374192 25.16 0.000 Error 13 110761808 8520139 Lack-of-Fit 11 86196808 7836073 0.64 0.748 Pure Error 24565000 12282500 Total 14 325136000 Model Summary R-sq R-sq(adj) R-sq(pred) 2918.93 65.93% 63.31% 54.98% Coefficients Term Coef SE Coef T-Value P-Value VIF Constant 151915 5563 27.31 0.000 Heating Area 16.63 3.32 5.02 0.000 1.00 Regression Equation Assessed Value 151915 + 16.63 Heating Area %3D Prediction Fit SE Fit 95% CI 95% PI 181024 808.185 (179278, 182770) (174481, 187567) Fit SE Fit 95% CI 95% PI 185182 1350.64 (182264, 188100) (178234, 192130) Assessed Value
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Correlation, Regression, and Association
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman