In this section, you should record any visual observations you make (colors, appearances of water, physical states, etc) for electrochemistry redox reaction (Oxidation Reduction)experiment. You should also record any numeric observations (masses, volumes, concentrations).Make sure they are organized and labeled so it is clear what the observation of electrochemistry redox reaction (Oxidation Reduction)experiment. Here is the data for the electrochemistry redox reaction (Oxidation Reduction)experiment: Part 1 was testing the observed vs theoretical cell potentials for the following voltaic cells: Zn/Cu reading was 0.914 Zn/Al reading was 0.210 Zn/Ag reading was 1.330 Al/Cu reading was 0.672 Ag/Cu reading was 0.413 Ag/Al reading was 1.000 Part 2 of the experiment was constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. Then measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added.
In this section, you should record any visual observations you make (colors, appearances of water, physical states, etc) for electrochemistry redox reaction (Oxidation Reduction)experiment. You should also record any numeric observations (masses, volumes, concentrations).
Make sure they are organized and labeled so it is clear what the observation of electrochemistry redox reaction (Oxidation Reduction)experiment.
Here is the data for the electrochemistry redox reaction (Oxidation Reduction)experiment:
Part 1 was testing the observed vs theoretical cell potentials for the following voltaic cells:
Zn/Cu reading was 0.914
Zn/Al reading was 0.210
Zn/Ag reading was 1.330
Al/Cu reading was 0.672
Ag/Cu reading was 0.413
Ag/Al reading was 1.000
Part 2 of the experiment was constructed an electrolytic cell using 2.008 grams of KI in about 100mL of DI water. Then measured the pH of the reaction mixture which was 5.22 with soultion in plain water and 10.74 with soultion added.
Unlock instant AI solutions
Tap the button
to generate a solution