In this python program convert into java program and run show the picture of the output of the program. Thank you. Source Code: import math import decimal def ln(x,y): lnX = math.log(x) lnY = math.log(y) ln = lnX + lnY *2 return ln lower_limit = float(input("Enter lower limit: ")) upper_limit = float(input("Enter upper limit: ")) iterations = (upper_limit -1)/0.05 iterations = int(iterations) y = 1.05 final_answer = 0 for i in range(1, iterations): ans = ln(lower_limit, y) lower_limit += 0.05 y = lower_limit + 0.05 final_answer += ans x = round(lower_limit,2) x = decimal.Decimal(x) y = decimal.Decimal(y) x = round(x,2) y = round(y,2) print("_________________________________________________________________________________________________________________") print("Iteration:",round(x,2)) print("Function\\|\Lower Limit \|\ Upper Limit \|\ Trapezoid Application (width=0.05) \|") print("(ln(x)+ln(x)/2)1 \|\x=",round(x,2),"\|\x=",round(y,2),"\|\ (ln(",x,")+ln(",y,")/2)1\|\\Answer: ",ans) print("______________________________________________________________________________________________________________________") print("\\Total Iterations:",round(x,2)) print ("Final Answer/Summation of all iterations:",final_answer) .. See the picture below that's an output of this program. Thank you
In this python program convert into java program and run show the picture of the output of the program. Thank you. Source Code: import math import decimal def ln(x,y): lnX = math.log(x) lnY = math.log(y) ln = lnX + lnY *2 return ln lower_limit = float(input("Enter lower limit: ")) upper_limit = float(input("Enter upper limit: ")) iterations = (upper_limit -1)/0.05 iterations = int(iterations) y = 1.05 final_answer = 0 for i in range(1, iterations): ans = ln(lower_limit, y) lower_limit += 0.05 y = lower_limit + 0.05 final_answer += ans x = round(lower_limit,2) x = decimal.Decimal(x) y = decimal.Decimal(y) x = round(x,2) y = round(y,2) print("_________________________________________________________________________________________________________________") print("Iteration:",round(x,2)) print("Function\\|\Lower Limit \|\ Upper Limit \|\ Trapezoid Application (width=0.05) \|") print("(ln(x)+ln(x)/2)1 \|\x=",round(x,2),"\|\x=",round(y,2),"\|\ (ln(",x,")+ln(",y,")/2)1\|\\Answer: ",ans) print("______________________________________________________________________________________________________________________") print("\\Total Iterations:",round(x,2)) print ("Final Answer/Summation of all iterations:",final_answer) .. See the picture below that's an output of this program. Thank you
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
In this python program convert into java program and run show the picture of the output of the program. Thank you.
Source Code:
import math
import decimal
def ln(x,y):
lnX = math.log(x)
lnY = math.log(y)
ln = lnX + lnY *2
return ln
lower_limit = float(input("Enter lower limit: "))
upper_limit = float(input("Enter upper limit: "))
iterations = (upper_limit -1)/0.05
iterations = int(iterations)
y = 1.05
final_answer = 0
for i in range(1, iterations):
ans = ln(lower_limit, y)
lower_limit += 0.05
y = lower_limit + 0.05
final_answer += ans
x = round(lower_limit,2)
x = decimal.Decimal(x)
y = decimal.Decimal(y)
x = round(x,2)
y = round(y,2)
print("_________________________________________________________________________________________________________________")
print("Iteration:",round(x,2))
print("Function\\|\Lower Limit \|\ Upper Limit \|\ Trapezoid Application (width=0.05) \|")
print("(ln(x)+ln(x)/2)1 \|\x=",round(x,2),"\|\x=",round(y,2),"\|\ (ln(",x,")+ln(",y,")/2)1\|\\Answer: ",ans)
print("______________________________________________________________________________________________________________________")
print("\\Total Iterations:",round(x,2))
print ("Final Answer/Summation of all iterations:",final_answer)
..
See the picture below that's an output of this program. Thank you

Transcribed Image Text:IDLE Shell 3.10.0
Eile
Edit
Shell
Debug
Options
Window
Help
RESTART:
D:/Program Files
(x86) /python/2.py
=====
Enter
lower limit:
Enter upper
limit:
Iterat ion:
Functi on
(In (x) +ln (x) /2)1
1.05
Trapezoid Application
(In (
Lower Limit
Upper Limit
(width=0.05)
1.05
x= 1.10
1.05
) +ln ( 1.10 )/2)1
x=
Answer:
O.0975 8032833886408
Iterat ion:
1.10
Trapezoid Application
(In ( 1.10 )+ln ( 1.15 )/2)1
Function
Lower Limit
Upper Limit
(width=0.05)
(ln (x) ++ln (x) /2)1
x= 1.10
x= 1.15
Answer:
0.23941052377 808192
Iterat ion:
1.15
Trapezoid Application
(in ( 1.15 ) +ln ( 1.20 )/2)1
Function
Lower Limit
Upper Limit
(width=o.05)
(in (x) +ln (x)/2)1
x= 1.15
x= 1.20
Answer:
0.3748340645546422
Iteration: 1.20
Trapezoid Application
(in ( 1.20 ) +ln ( 1.25 )/2) 1
Function
Lower Limit
Upper Limit
(width= o.05)
(in (x) +ln (x)/2)1
x= 1.20
x= 1.25
Answer:
0.504405055963068
Iterat ion:
1.25
Trapezoid Application
(In ( 1.25
Function
Lower Limit
Upper Limit
(width=o.05)
(in (x) +ln (x) /2)1
1.25
1.30
) +ln ( 1.30 )/2)1
Answer:
0.6286086594223743
Iterat ion:
Functi on
(in (x) +ln (x) /2)1
1.30
Trapezoid Application
(ln ( 1. 30 ) +ln ( 1.35 )/2)1
Lower Limit
Upper Limit
(width=o.05)
x= 1.30
x= 1.35
Answer:
0.747872080249192
Iteration:
1.35
Functi on
(in (x) +ln (x) /2)1
Trapezoid Application
(in (
Lower Limit
Upper Limit
(width=o.05)
x= 1.35
1.40
1.35 ) +ln (
1.40
)/2)1
Ln: 492
Col: 0
IDLE Shell 3.10.0
Edit
Iterat ion:
Functi on
(in (x) +ln (x) /2)1
File
Shell
Debug
Options
Window
Help
1.35
Trapezoid Application
(in ( 1.35 ) +ln ( 1.40 )/2)1
Lower Limit
Upper Limit
(width=o.05)
x= 1.35
x= 1.40
Answer:
0.8625734493681676
Iterat ion:
1.40
Trapezo id Application
(in ( 1. 40 ) +ln ( 1.45 )/2)1
Function
Lower Limit
Upper Limit
(width=o.05)
(In (x) +ln (x)/2)1
1.40
x= 1.45
Answer:
0.9730490656927642
Iterat ion:
1.45
Trapezoid Application
(in ( 1.45 ) +1n ( 1.50 )/2)1
Function
Lower Limit
Upper Limit
(width=o.05)
(In (x) +ln (x) /2)1
x= 1.45
x= 1.50
Answer :
1.079599349486179
Iterat ion:
1.50
Trapezoid Application
(In ( 1. 50 ) +ln ( 1.55 )/2)1
Function
Lower Limit
Upper Limit
(width= o.05)
(in (x) +ln (x)/2)1
x= 1.50
X= 1.55
Answer:
1.182493772648812
Iterat ion:
1.55
Trapezoid Application
(In ( 1.55 ) +ln ( 1.60 )/2)1
Function
Lower Limit
Upper Limit
(width=o.05)
(in (x) +ln (x)/2)1
1.55
x= 1.60
Answer:
1.2819749699704752
Iterat ion:
Functi on
(in (x) +ln (x) /2) 1
1.60
Trapezoid Application
(In ( 1.60 ) +ln ( 1.65 )/2)1
Lower Limit
Upper Limit
(width= o.05)
1.60
x= 1.65
Answer:
1.3782621894226268
Iteration:
1.65
Trapezoid Application
(In ( 1. 65 ) +ln ( 1.70 )/2) 1
Function
Lower Limit
Upper Limit
(width=o.05)
(In (x) +ln (x)/2)1
1.65
x= 1.70
Answer:
1.4715542050707142
Iterat ion:
Functi on
1.70
Lower
Limit
Upper Limit
Trapezoid Application
(width=o.05)
Ln: 492
Col: 0
IDLE Shell 3.10.0
File
Edit
Shell
Debug Options
Window
Help
Answer:
1.4715542050707142
Iteration: 1.70
Function
Lower L imit
Upper Limit
Trapezoid Application
(width=0.05)
(In (x) +ln (x)/2) 1
x= 1.70
x= 1.75
(In ( 1.70 )+1n ( 1.75 )/2) 1
Answer:
1.5620317900368303
Iteration: 1.75
Function
Lower Limit
Upper Limit
Trapezoid Application (width-0.05)
(In (x) +ln (x)/2) 1
x= 1.75
x= 1.80
(In ( 1.75 )+ln ( 1.80 )/2) 1
Answer:
1.649859826933016
Iteration: 1.80
Function
Lower Limit
Upper Limit
Trapezoid Application (width=0.05)
(In (x) +ln (x) /2)1
1.80
x= 1.85
(In ( 1.8O )+1n ( 1.85 )/2)1
Answer:
1.7351891177396612
Iteration:
1.85
Function
Lower Limit
Upper Limit
Trapezoid Application (width=0.05)
(In (x) +ln (x) /2) l
x= 1.85
x= 1.9O
(In ( 1.85 ) +ln ( 1.90 )/2)1
Answer:
1.8181579430825865
Iteration:
1.90
Function
Lower Limit
Upper Limit
Trapezoid Application
(width=0.05)
(In (x) +ln (x)/2) 1
x= 1.90
x= 1.95
(ln ( 1.90 ) +ln ( 1.95 )/2) 1
Answer:
1.898893411435023
Iteration:
1.95
Trapezoid Application
(In ( 1.95 )+1n ( 2.00 )/2)1
Function
Lower Limit
Upper Limit
(width-0.05)
(In (x) +ln (x) /2) 1
1.95
x= 2.0O
Answer:
1.9775126313237061
Total Iterations:
1.95
Final Answer/Summation of all iterations:
21.46386243451678
>>>
Ln: 492
Col: 0
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON

Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education