In this problem we consider a patient being given a drug through infusion, for example through the steady drip of an IV, instead of one pill at a time. If m(t) is the mass of the drug in the blood at time t≥ 0, R is a constant infusion rate, and k> 0 is a constant rate at which the drug is absorbed from the blood into the body, the corresponding differential equation is dm dt = R-k-m(t). R(1-e For the initial condition m(0) - e-kt) = 0 (no drug in the blood initially), the solution is m(t) k Notice that the solution depends on time (obviously), but also on the constants R and k. Hint: only one of these three questions requires L'Hopital's Rule. - 1. What is the long-term behavior of the solution (that is, time goes to infinity)? Why does the answer make sense? 2. What does the solution look like for an infinitely large absorption rate k? (Compute the limit of m(t) as k→ ∞.) Why does the answer make sense? 3. What does the solution look like when the absorption rate k goes to 0? (Compute the limit of m(t) as k→ 0+.) Why does this answer make sense?
In this problem we consider a patient being given a drug through infusion, for example through the steady drip of an IV, instead of one pill at a time. If m(t) is the mass of the drug in the blood at time t≥ 0, R is a constant infusion rate, and k> 0 is a constant rate at which the drug is absorbed from the blood into the body, the corresponding differential equation is dm dt = R-k-m(t). R(1-e For the initial condition m(0) - e-kt) = 0 (no drug in the blood initially), the solution is m(t) k Notice that the solution depends on time (obviously), but also on the constants R and k. Hint: only one of these three questions requires L'Hopital's Rule. - 1. What is the long-term behavior of the solution (that is, time goes to infinity)? Why does the answer make sense? 2. What does the solution look like for an infinitely large absorption rate k? (Compute the limit of m(t) as k→ ∞.) Why does the answer make sense? 3. What does the solution look like when the absorption rate k goes to 0? (Compute the limit of m(t) as k→ 0+.) Why does this answer make sense?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%

Transcribed Image Text:In this problem we consider a patient being given a drug through infusion, for example through the
steady drip of an IV, instead of one pill at a time. If m(t) is the mass of the drug in the blood at
time t≥ 0, R is a constant infusion rate, and k> 0 is a constant rate at which the drug is absorbed
from the blood into the body, the corresponding differential equation is
dm
dt
=
R-k m(t).
e-kt)
R(1 - e
k
For the initial condition m(0) = 0 (no drug in the blood initially), the solution is m(t)
Notice that the solution depends on time (obviously), but also on the constants R and k. Hint:
only one of these three questions requires L'Hopital's Rule.
1. What is the long-term behavior of the solution (that is, time goes to infinity)? Why does the
answer make sense?
2. What does the solution look like for an infinitely large absorption rate k? (Compute the limit
of m(t) as k→ ∞.) Why does the answer make sense?
3. What does the solution look like when the absorption rate k goes to 0? (Compute the limit
of m(t) as k→ 0+.) Why does this answer make sense?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

