In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer. Is fishing better from a boat or from the shore? Pyramid Lake is located on the Paiute Indian Reservation in Nevada. Presidents, movie stars, and people who just want to catch fish go to Pyramid Lake for really large cutthroat trout. Let row B represent hours per fish caught fishing from the shore, and let row A represent hours per fish caught using a boat. The following data are paired by month from October through April. Oct Nov Dec Jan Feb March April B: Shore 1.5 1.9 2.0 3.2 3.9 3.6 3.3 A: Boat 1.4 1.3 1.5 2.2 3.3 3.0 3.8 Use a 1% level of significance to test if there is a difference in the population mean hours per fish caught using a boat compared with fishing from the shore. (Let d = B − A.) (a) What is the level of significance? What is the value of the sample test statistic? (Round your answer to three decimal places.)
In this problem, assume that the distribution of differences is approximately normal. Note: For degrees of freedom d.f. not in the Student's t table, use the closest d.f. that is smaller. In some situations, this choice of d.f. may increase the P-value by a small amount and therefore produce a slightly more "conservative" answer.
Is fishing better from a boat or from the shore? Pyramid Lake is located on the Paiute Indian Reservation in Nevada. Presidents, movie stars, and people who just want to catch fish go to Pyramid Lake for really large cutthroat trout. Let row B represent hours per fish caught fishing from the shore, and let row A represent hours per fish caught using a boat. The following data are paired by month from October through April.
Oct | Nov | Dec | Jan | Feb | March | April | |
B: Shore | 1.5 | 1.9 | 2.0 | 3.2 | 3.9 | 3.6 | 3.3 |
A: Boat | 1.4 | 1.3 | 1.5 | 2.2 | 3.3 | 3.0 | 3.8 |
Use a 1% level of significance to test if there is a difference in the population mean hours per fish caught using a boat compared with fishing from the shore. (Let d = B − A.)
Step by step
Solved in 4 steps with 5 images