In the past, a chemical company produced 880 pounds of a certain type of plastic per day. Now, using a newly developed and less expensive process, the mean daily yield of plastic for the first 50 days of production is 871 pounds; the standard deviation is 21 pounds. Do the data provide sufficient evidence to indicate that the mean daily yield for the new process is less than that of the old procedure? (Use α=0.05) (b) Test statistic for the problem above is
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
In the past, a chemical company produced 880 pounds of a certain type of plastic per day. Now, using a newly developed and less expensive process, the
Do the data provide sufficient evidence to indicate that the mean daily yield for the new process is less than that of the old procedure? (Use α=0.05)
(b) Test statistic for the problem above is
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images