In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security. Requirements and Conclusions a. Are any of the three requirements violated? Can the methods of this section be used to test the claim? b. It was stated that we can easily remember how to interpret P -values with this: “If the P is low, the null must go.” What does this mean? c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading? d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?
Addition Rule of Probability
It simply refers to the likelihood of an event taking place whenever the occurrence of an event is uncertain. The probability of a single event can be calculated by dividing the number of successful trials of that event by the total number of trials.
Expected Value
When a large number of trials are performed for any random variable ‘X’, the predicted result is most likely the mean of all the outcomes for the random variable and it is known as expected value also known as expectation. The expected value, also known as the expectation, is denoted by: E(X).
Probability Distributions
Understanding probability is necessary to know the probability distributions. In statistics, probability is how the uncertainty of an event is measured. This event can be anything. The most common examples include tossing a coin, rolling a die, or choosing a card. Each of these events has multiple possibilities. Every such possibility is measured with the help of probability. To be more precise, the probability is used for calculating the occurrence of events that may or may not happen. Probability does not give sure results. Unless the probability of any event is 1, the different outcomes may or may not happen in real life, regardless of how less or how more their probability is.
Basic Probability
The simple definition of probability it is a chance of the occurrence of an event. It is defined in numerical form and the probability value is between 0 to 1. The probability value 0 indicates that there is no chance of that event occurring and the probability value 1 indicates that the event will occur. Sum of the probability value must be 1. The probability value is never a negative number. If it happens, then recheck the calculation.
In Exercises 1–4, use these results from a USA Today survey in which 510 people chose to respond to this question that was posted on the USA Today website: “Should Americans replace passwords with biometric security (fingerprints, etc)?” Among the respondents, 53% said “yes.” We want to test the claim that more than half of the population believes that passwords should be replaced with biometric security.
Requirements and Conclusions
a. Are any of the three requirements violated? Can the methods of this section be used to test the claim?
b. It was stated that we can easily remember how to interpret P -values with this: “If the P is low, the null must go.” What does this mean?
c. Another memory trick commonly used is this: “If the P is high, the null will fly.” Given that a hypothesis test never results in a conclusion of proving or supporting a null hypothesis, how is this memory trick misleading?
d. Common significance levels are 0.01 and 0.05. Why would it be unwise to use a significance level with a number like 0.0483?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps