In class I derived the ordinary nuclear density to be about 0.138 u/fm3. A neutron star is a collapsed star that contains neutrons in a highly compactified state, so its average density is higher. Assume a neutron star is spherical and has an average density which is about twice the ordinary nuclear density. If it is 50% heavier than the Sun, what would be its radius? (Given: mass of sun = 2*1030 kg, 1 u = 1.66*10-27 kg.) A) 14.6 km B) 11.6 km C) 10.1 km
Nuclear Fusion
Nuclear fusion is a type of nuclear reaction. In nuclear fusion, two or more than two lighter atomic nuclei combine to form a heavier nucleus. During this process, an enormous amount of energy is released. This energy is called nuclear energy. Nuclear fusion is the energy source of the sun and stars.
Fusion Bomb
A fusion bomb is also known as a thermonuclear bomb or hydrogen bomb which releases a large amount of explosive energy during a nuclear chain reaction when the lighter nuclei in it, combine to form heavier nuclei, and a large amount of radiation is released. It is an uncontrolled, self-sustaining nuclear chain reaction where isotopes of hydrogen combine under very high temperature to form helium. They work on the principle of operation of atomic fusion. The isotopes of Hydrogen are deuterium and tritium, where they combine their masses and have greater mass than the product nuclei, get heated at high temperatures, and releases energy.
In class I derived the ordinary nuclear density to be about 0.138 u/fm3. A neutron star is a collapsed star that contains neutrons in a highly compactified state, so its average density is higher. Assume a neutron star is spherical and has an average density which is about twice the ordinary nuclear density. If it is 50% heavier than the Sun, what would be its radius? (Given: mass of sun = 2*1030 kg, 1 u = 1.66*10-27 kg.)
A) 14.6 km
B) 11.6 km
C) 10.1 km
D) none of these.
Step by step
Solved in 2 steps with 2 images