In airline applications, failure of a component can result in catastrophe. As a result, many airline components utilize something called triple modular redundancy. This means that a critical component has two backup components that may be utilized should the initial component fail. Suppose a certain critical airline component has a probability of failure of 0.0058 and the system that utilizes the component is part of a triple modular redundancy. (a) Assuming each component's failure/success is independent of the others, what is the probability all three components fail, resulting in disaster for the flight? (b) What is the probability at least one of the components does not fail? (a) The probability is (Round to eight decimal places as needed.)
In airline applications, failure of a component can result in catastrophe. As a result, many airline components utilize something called triple modular redundancy. This means that a critical component has two backup components that may be utilized should the initial component fail. Suppose a certain critical airline component has a probability of failure of 0.0058 and the system that utilizes the component is part of a triple modular redundancy. (a) Assuming each component's failure/success is independent of the others, what is the probability all three components fail, resulting in disaster for the flight? (b) What is the probability at least one of the components does not fail? (a) The probability is (Round to eight decimal places as needed.)
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
In airline applications, failure of a component can result in catastrophe. As a result, many airline components utilize something called triple modular redundancy. This means that a critical component has two backup components that may be utilized should the initial component fail. Suppose a certain critical airline component has a probability of failure of 0.0058 and the system that utilizes the component is part of a triple modular redundancy.
(a) Assuming each component's failure/success is independent of the others, what is the probability all three components fail, resulting in disaster for the flight? (b) What is the probability at least one of the components does not fail?
Expert Solution
Step 1
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman