In a pulse power circuit, the voltage of a 10-μF capacitor is zero for t < 0 and v = 5(1−e−4000t) (t > 0). (a) Symbolically derive the current through the capacitor and the energy stored in the capacitor. (b) Check your derived results by checking numerically the current and the energy stored at t = 0 ms and t = 10 ms with the answers. (c) What are the numerical values of the capacitor’s voltage and current just before and after t = 0 (i.e., vc(0-) = vc(0+) and ic(0-) ≠ ic(0+)? Does this make physical sense? Answer: 200mA, 8.5×10-16 mA, 0J, 0.125 mJ
In a pulse power circuit, the voltage of a 10-μF capacitor is zero for t < 0 and v = 5(1−e−4000t) (t > 0). (a) Symbolically derive the current through the capacitor and the energy stored in the capacitor. (b) Check your derived results by checking numerically the current and the energy stored at t = 0 ms and t = 10 ms with the answers. (c) What are the numerical values of the capacitor’s voltage and current just before and after t = 0 (i.e., vc(0-) = vc(0+) and ic(0-) ≠ ic(0+)? Does this make physical sense? Answer: 200mA, 8.5×10-16 mA, 0J, 0.125 mJ
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
In a pulse power circuit, the voltage of a 10-μF capacitor is zero for t < 0 and v = 5(1−e−4000t) (t > 0). (a) Symbolically derive the current through the capacitor and the energy stored in the capacitor. (b) Check your derived results by checking numerically the current and the energy stored at t = 0 ms and t = 10 ms with the answers. (c) What are the numerical values of the capacitor’s voltage and current just before and after t = 0 (i.e., vc(0-) = vc(0+) and ic(0-) ≠ ic(0+)? Does this make physical sense? Answer: 200mA, 8.5×10-16 mA, 0J, 0.125 mJ
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,