In a nuclear power generating plant, heat from a reactor is used to generate steam for turbines. The rate of the fission reaction determines the amount of heat generated, and this rate is controlled by rods inserted into the radioactive core. The rods regulate the flow of neutrons. If the rods are lowered into the core, the rate of fission will diminish; if the rods are raised, the fission rate will increase. By automatically controlling the position of the rods, the amount of heat generated by the reactor can be regulated. Draw a functional block diagram for the nuclear reactor control system shown in Figure P1.4. Show all blocks and signals. [Section 1.4: Introduction to a Case Study]
Nuclear Fusion
Nuclear fusion is a type of nuclear reaction. In nuclear fusion, two or more than two lighter atomic nuclei combine to form a heavier nucleus. During this process, an enormous amount of energy is released. This energy is called nuclear energy. Nuclear fusion is the energy source of the sun and stars.
Fusion Bomb
A fusion bomb is also known as a thermonuclear bomb or hydrogen bomb which releases a large amount of explosive energy during a nuclear chain reaction when the lighter nuclei in it, combine to form heavier nuclei, and a large amount of radiation is released. It is an uncontrolled, self-sustaining nuclear chain reaction where isotopes of hydrogen combine under very high temperature to form helium. They work on the principle of operation of atomic fusion. The isotopes of Hydrogen are deuterium and tritium, where they combine their masses and have greater mass than the product nuclei, get heated at high temperatures, and releases energy.
In a nuclear power generating plant, heat from a
reactor is used to generate steam for turbines. The
rate of the fission reaction determines the amount of
heat generated, and this rate is controlled by rods
inserted into the radioactive core. The rods regulate
the flow of neutrons. If the rods are lowered into the
core, the rate of fission will diminish; if the rods are
raised, the fission rate will increase. By automatically controlling the position of the rods, the amount of heat
generated by the reactor can be regulated. Draw a
functional block diagram for the nuclear reactor control
system shown in Figure P1.4. Show all blocks and
signals. [Section 1.4: Introduction to a Case Study]
Step by step
Solved in 2 steps with 1 images