In 1993 the Galileo spacecraft sent home an image of asteroid "243 Ida" and a tiny moon "Dactyl" orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours. a. Show and explain how we derived Kepler's 3rd law using Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force. b. Use your result for Kepler's 3rd Law to determine the mass of the asteroid. c. If the asteroid has a radius of about 16 km calculate the approximate value for the acceleration due to gravity, g, on its surface. d. What velocity would you need to achieve in order to lift off and leave this asteroid? e. Use Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force to determine an expression for circular orbital velocity. f. What is the orbital velocity of the small moon if we assume it is in a circular orbit?
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
In 1993 the Galileo spacecraft sent home an image of asteroid "243 Ida" and a tiny moon "Dactyl" orbiting the asteroid. Assume that the small moon orbits in a circle with a radius of r = 100 km from the center of the asteroid with an orbital period of T = 27 hours.
a. Show and explain how we derived Kepler's 3rd law using Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force.
b. Use your result for Kepler's 3rd Law to determine the mass of the asteroid.
c. If the asteroid has a radius of about 16 km calculate the approximate value for the acceleration due to gravity, g, on its surface.
d. What velocity would you need to achieve in order to lift off and leave this asteroid?
e. Use Newton's 2nd Law, the definition for centripetal acceleration, and the equation for gravitational force to determine an expression for circular orbital velocity.
f. What is the orbital velocity of the small moon if we assume it is in a circular orbit?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images