Kepler's Third Law and Newton's Law of Universal Gravitation (a) Use Newton's Universal Law of Gravitation and what you know about centripetal acceleration/force to derive Kepler's Third Law for a planet in a circular orbit about the sun: T² = Kr³ K = constant = 4²/GM where T is the orbital period of the planet (the time for one complete orbit), r is the radius of the planet's orbit, M is the mass of the sun, and G is the universal gravitational constant. (b) Determine the metric system units of K and show that they make the units of T² = Kr³ work out correctly. (c) The earth orbits the sun once per year (365 days) and its average orbital radius is 1.50 x 10¹¹ m. Use this information and Kepler's Third Law to estimate the mass of the sun in kilograms. [answer: about 2 x 10³⁰ kg] (d) The radius of the sun is about 7 x 108 m. Use this radius and the mass of the sun estimated in part (c) to estimate the acceleration of an object near the surface of the sun. [answer: about 300 m/s²] F₂ =G Mplanet maun/r² Fnet = Fz = mac ac =v²/r G = 6.674 x 10-¹1 N-m²/kg² d=vt: d = circumference of the orbit - 2r and t = time for one orbit = T
Kepler's Third Law and Newton's Law of Universal Gravitation (a) Use Newton's Universal Law of Gravitation and what you know about centripetal acceleration/force to derive Kepler's Third Law for a planet in a circular orbit about the sun: T² = Kr³ K = constant = 4²/GM where T is the orbital period of the planet (the time for one complete orbit), r is the radius of the planet's orbit, M is the mass of the sun, and G is the universal gravitational constant. (b) Determine the metric system units of K and show that they make the units of T² = Kr³ work out correctly. (c) The earth orbits the sun once per year (365 days) and its average orbital radius is 1.50 x 10¹¹ m. Use this information and Kepler's Third Law to estimate the mass of the sun in kilograms. [answer: about 2 x 10³⁰ kg] (d) The radius of the sun is about 7 x 108 m. Use this radius and the mass of the sun estimated in part (c) to estimate the acceleration of an object near the surface of the sun. [answer: about 300 m/s²] F₂ =G Mplanet maun/r² Fnet = Fz = mac ac =v²/r G = 6.674 x 10-¹1 N-m²/kg² d=vt: d = circumference of the orbit - 2r and t = time for one orbit = T
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![Kepler's Third Law and Newton's Law of Universal Gravitation
(a) Use Newton's Universal Law of Gravitation and what you know about centripetal acceleration/force to
derive Kepler's Third Law for a planet in a circular orbit about the sun:
T² = Kr³
K = constant = 4²/GM
where T is the orbital period of the planet (the time for one complete orbit), r is the radius of the planet's
orbit, M is the mass of the sun, and G is the universal gravitational constant.
(b) Determine the metric system units of K and show that they make the units of T² – Kr³ work out
correctly.
(c) The earth orbits the sun once per year (365 days) and its average orbital radius is 1.50 x 10¹¹ m. Use
this information and Kepler's Third Law to estimate the mass of the sun in kilograms.
[answer: about 2 x 10³⁰ kg]
(d) The radius of the sun is about 7 x 108 m. Use this radius and the mass of the sun estimated in part (c)
to estimate the acceleration of an object near the surface of the sun. [answer: about 300 m/s²]
F₂ =G Mplanet Msun/r²
Fnet = Fg = mac
ac = v²/r
G = 6.674 x 10-¹1 N-m²/kg²
d = vt: d = circumference of the orbit = 2πr and t = time for one orbit = T](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F56cdda57-70a5-4d4f-8db2-c3e75050b484%2F5306c422-17a1-4fd8-a4df-ef0d6d719458%2F39py4ar_processed.png&w=3840&q=75)
Transcribed Image Text:Kepler's Third Law and Newton's Law of Universal Gravitation
(a) Use Newton's Universal Law of Gravitation and what you know about centripetal acceleration/force to
derive Kepler's Third Law for a planet in a circular orbit about the sun:
T² = Kr³
K = constant = 4²/GM
where T is the orbital period of the planet (the time for one complete orbit), r is the radius of the planet's
orbit, M is the mass of the sun, and G is the universal gravitational constant.
(b) Determine the metric system units of K and show that they make the units of T² – Kr³ work out
correctly.
(c) The earth orbits the sun once per year (365 days) and its average orbital radius is 1.50 x 10¹¹ m. Use
this information and Kepler's Third Law to estimate the mass of the sun in kilograms.
[answer: about 2 x 10³⁰ kg]
(d) The radius of the sun is about 7 x 108 m. Use this radius and the mass of the sun estimated in part (c)
to estimate the acceleration of an object near the surface of the sun. [answer: about 300 m/s²]
F₂ =G Mplanet Msun/r²
Fnet = Fg = mac
ac = v²/r
G = 6.674 x 10-¹1 N-m²/kg²
d = vt: d = circumference of the orbit = 2πr and t = time for one orbit = T
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON