Comet Halley has a semi-major axis of 17.7 AU. (The AU, or Astronomical Unit, is the distance from the Sun to the Earth. 1 AU = 1.50x1011 m.) The eccentricity of Comet Halley is 0.967. a. How far is Comet Halley from the sun at Aphelion, the farthest position from the sun? (Give your answer in AU.)? b. What is comet Halley's orbital time? (Give your answer in years.) Note: Using Kepler's third law in the form: P2 = a3 is convenient. This equation works for any object orbiting the sun when the orbital period is in years and the semi major axis is in AU. The reason this works is because this equation is normalized to earth. The AU and year are both 1 for Earth. c. In what year will Comet Halley start to move back toward the sun?
Comet Halley has a semi-major axis of 17.7 AU. (The AU, or Astronomical Unit, is the distance from the Sun to the Earth. 1 AU = 1.50x1011 m.) The eccentricity of Comet Halley is 0.967.
a. How far is Comet Halley from the sun at Aphelion, the farthest position from the sun? (Give your answer in AU.)?
b. What is comet Halley's orbital time? (Give your answer in years.) Note: Using Kepler's third law in the form: P2 = a3 is convenient. This equation works for any object orbiting the sun when the orbital period is in years and the semi major axis is in AU. The reason this works is because this equation is normalized to earth. The AU and year are both 1 for Earth.
c. In what year will Comet Halley start to move back toward the sun?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps