In 1843, a comet passed extremely close to the sun, mass Ms: its distance from the perihelion was d = 6.1*10^3 * a0, where a0 is the radius of the Earth's orbit. Accurate measurements showed that the eccentricity of the comet was e=1-x with x = 9.4*10^-5. Given u = 30 km/s is the speed of revolution of the Earth around the Sun. (a) Express the product GMs as a function of u and a0. (b) Considering that the trajectory of the comet is quasi-parabolic, calculate its speed of passage vp at the perihelion. (c) Deduce the speed Va of transition to aphelion as a function of Vp and x. Do the digital application. (d) In what year will this comet return to the solar system?
In 1843, a comet passed extremely close to the sun, mass Ms: its distance from the perihelion was d = 6.1*10^3 * a0, where a0 is the radius of the Earth's orbit. Accurate measurements showed that the eccentricity of the comet was e=1-x with x = 9.4*10^-5. Given u = 30 km/s is the speed of revolution of the Earth around the Sun. (a) Express the product GMs as a function of u and a0. (b) Considering that the trajectory of the comet is quasi-parabolic, calculate its speed of passage vp at the perihelion. (c) Deduce the speed Va of transition to aphelion as a function of Vp and x. Do the digital application. (d) In what year will this comet return to the solar system?
Related questions
Question
4
Hello, I have questions about the physics, can you please help me with your diagram and explanation? I am highly appreciate it and thank you very much! In 1843, a comet passed extremely close to the sun, mass Ms: its distance from the perihelion was d = 6.1*10^3 * a0, where a0 is the radius of the Earth's orbit. Accurate measurements showed that the eccentricity of the comet was e=1-x with x = 9.4*10^-5. Given u = 30 km/s is the speed of revolution of the Earth around the Sun. (a) Express the product GMs as a function of u and a0. (b) Considering that the trajectory of the comet is quasi-parabolic, calculate its speed of passage vp at the perihelion. (c) Deduce the speed Va of transition to aphelion as a function of Vp and x. Do the digital application. (d) In what year will this comet return to the solar system?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps