In [10]: import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import metrics np.random.seed(66) # Load dataset and preprocessing churn = pd.read_csv('https://raw.githubusercontent.com/yhat/demo-churn-pred/master/model/churn.csv') churn.columns churn["Int'l Plan"] = churn["Int'l Plan"]. map(dict(yes=1, no=0)) churn['VMail Plan'] = churn['VMail Plan'].replace({"yes": 1, "no": 0}) churn.select_dtypes('object').columns churn.drop(['State', 'Phone'], inplace=True, axis=1) # sklearn expects all numerical attributes In [12]: I # Model Training X = churn.drop('Churn?', axis=1) y = churn[' Churn?'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) print(f"train data size is {X_train.shape}") clf = DecisionTreeClassifier() clf train data size is (2333, 18) Out[12]: DecisionTreeClassifier()

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

In this piece of code, the output of clf is DecisionTreeClassifier(). Why is the inside of the () empty? The output should be as same as the image(2) showed.

In [10]: N import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn import metrics
np.random.seed (66)
# Load dataset and preprocessing
churn = pd.read_csv('https://raw.githubusercontent.com/yhat/demo-churn-pred/master/model/churn.csv')
churn.columns
churn["Int'l Plan"]
churn[ 'VMail Plan'] = churn['VMail Plan'].replace({"yes": 1, "no": 0})
churn.select_dtypes('object').columns
churn.drop(['State', 'Phone'], inplace=True, axis=1) # sklearn expects all numerical attributes
churn["Int'1 Plan"].map(dict(yes=1, no=0))
In [12]:
N # Model Training
X = churn.drop('Churn?', axis=1)
y = churn[' Churn?']
X_train, X_test, y_train, y_test =
print (f"train data size is {X_train.shape}")
train_test_split(X, y, test_size=0.3, random_state=1)
clf = DecisionTreeClassifier()
clf
train data size is (2333, 18)
Out[12]: DecisionTreeClassifier()
Transcribed Image Text:In [10]: N import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import metrics np.random.seed (66) # Load dataset and preprocessing churn = pd.read_csv('https://raw.githubusercontent.com/yhat/demo-churn-pred/master/model/churn.csv') churn.columns churn["Int'l Plan"] churn[ 'VMail Plan'] = churn['VMail Plan'].replace({"yes": 1, "no": 0}) churn.select_dtypes('object').columns churn.drop(['State', 'Phone'], inplace=True, axis=1) # sklearn expects all numerical attributes churn["Int'1 Plan"].map(dict(yes=1, no=0)) In [12]: N # Model Training X = churn.drop('Churn?', axis=1) y = churn[' Churn?'] X_train, X_test, y_train, y_test = print (f"train data size is {X_train.shape}") train_test_split(X, y, test_size=0.3, random_state=1) clf = DecisionTreeClassifier() clf train data size is (2333, 18) Out[12]: DecisionTreeClassifier()
Out[46]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
max_depth=None, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_1leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',
random_state=None, splitter='best')
Transcribed Image Text:Out[46]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_1leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=None, splitter='best')
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Types of trees
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education