If you swim with the current in a river, your speed is increased by the speed of the water; if you swim against the current, your speed is decreased by the water’s speed. The current in a river flows at 0.52 m/s. In still water you can swim at 1.78 m/s. If you swim downstream a certain distance, then back again upstream, how much longer, in percent, does it take compared to the same trip in still water?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
If you swim with the current in a river, your speed is increased by the speed of the water; if you swim against the current, your speed is decreased by the water’s speed. The current in a river flows at 0.52 m/s. In still water you can swim at 1.78 m/s. If you swim downstream a certain distance, then back again upstream, how much longer, in percent, does it take compared to the same trip in still water?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images