If 20. g of AgNO3 is available, what volume of 0.20 M AgNO3 solution can be prepared? Volume = mL

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
---

### Calculating the Volume of a Silver Nitrate Solution

**Problem Statement:**
If 20. g of \( \text{AgNO}_3 \) is available, what volume of 0.20 M \( \text{AgNO}_3 \) solution can be prepared?

**Solution:**

---
#### Given:
- **Mass of \( \text{AgNO}_3 \)** = 20 g
- **Molarity (M)** of the solution = 0.20 M

#### Required:
- **Volume of the solution** in mL 

**Formula to use:**
\[ \text{Volume (L)} = \frac{\text{Mass of } \text{AgNO}_3 \text{ (g)}}{\text{Molarity (M)} \times \text{Molar Mass of } \text{AgNO}_3 \text{ (g/mol)}} \]

**Molar Mass of \( \text{AgNO}_3 \):**
- Silver (Ag): 107.87 g/mol
- Nitrogen (N): 14.01 g/mol
- Oxygen (O): 16.00 g/mol (since there are 3 oxygen atoms, it's 3 x 16.00)

So,
\[ \text{Molar Mass of } \text{AgNO}_3 = 107.87 + 14.01 + (3 \times 16) \ g/mol \]

**Calculate the molar mass:**
\[ \text{Molar Mass of } \text{AgNO}_3 = 107.87 + 14.01 + 48.00 \ g/mol \]
\[ \text{Molar Mass of } \text{AgNO}_3 = 169.88 \ g/mol \]

**Calculate the volume:**
\[ \text{Volume (L)} = \frac{20 \ \text{g}}{0.20 \ \text{M} \times 169.88 \ \text{g/mol}} \]
\[ \text{Volume (L)} = \frac{20}{33.976} \]
\[ \text{Volume (L)} \approx 0.588 \]

To convert this volume to mL:
\[ \text{Volume (mL)} = 0.588 \ \text{L} \times 1000 \ \text{mL/L} \]
Transcribed Image Text:--- ### Calculating the Volume of a Silver Nitrate Solution **Problem Statement:** If 20. g of \( \text{AgNO}_3 \) is available, what volume of 0.20 M \( \text{AgNO}_3 \) solution can be prepared? **Solution:** --- #### Given: - **Mass of \( \text{AgNO}_3 \)** = 20 g - **Molarity (M)** of the solution = 0.20 M #### Required: - **Volume of the solution** in mL **Formula to use:** \[ \text{Volume (L)} = \frac{\text{Mass of } \text{AgNO}_3 \text{ (g)}}{\text{Molarity (M)} \times \text{Molar Mass of } \text{AgNO}_3 \text{ (g/mol)}} \] **Molar Mass of \( \text{AgNO}_3 \):** - Silver (Ag): 107.87 g/mol - Nitrogen (N): 14.01 g/mol - Oxygen (O): 16.00 g/mol (since there are 3 oxygen atoms, it's 3 x 16.00) So, \[ \text{Molar Mass of } \text{AgNO}_3 = 107.87 + 14.01 + (3 \times 16) \ g/mol \] **Calculate the molar mass:** \[ \text{Molar Mass of } \text{AgNO}_3 = 107.87 + 14.01 + 48.00 \ g/mol \] \[ \text{Molar Mass of } \text{AgNO}_3 = 169.88 \ g/mol \] **Calculate the volume:** \[ \text{Volume (L)} = \frac{20 \ \text{g}}{0.20 \ \text{M} \times 169.88 \ \text{g/mol}} \] \[ \text{Volume (L)} = \frac{20}{33.976} \] \[ \text{Volume (L)} \approx 0.588 \] To convert this volume to mL: \[ \text{Volume (mL)} = 0.588 \ \text{L} \times 1000 \ \text{mL/L} \]
**Question:**

A solution was prepared by mixing \( 40.00 \) mL of \( 0.100 \, M \) \( \text{HNO}_3 \) and \( 170.00 \) mL of \( 0.200 \, M \) \( \text{HNO}_3 \). Calculate the molarity of the final solution of nitric acid.

Molarity = ____ \( M \)

**Explanation:**

To calculate the final molarity of the nitric acid solution, you need to use the formula for combined solutions:

\[ C_{\text{final}} = \frac{(C_1 \times V_1) + (C_2 \times V_2)}{V_{\text{total}}} \]

Where:
- \( C_1 \) and \( C_2 \) are the initial concentrations of the two solutions.
- \( V_1 \) and \( V_2 \) are the volumes of the two solutions.
- \( V_{\text{total}} \) is the total volume of the final solution.

In this example:
- \( C_1 = 0.100 \, M \)
- \( V_1 = 40.00 \, mL \)
- \( C_2 = 0.200 \, M \)
- \( V_2 = 170.00 \, mL \)

Calculate the moles of \( \text{HNO}_3 \) in each solution:
- Moles in first solution \( = C_1 \times V_1 = 0.100 \, M \times 40.00 \times 10^{-3} \, L = 0.00400 \, \text{moles} \)
- Moles in second solution \( = C_2 \times V_2 = 0.200 \, M \times 170.00 \times 10^{-3} \, L = 0.03400 \, \text{moles} \)

Total moles of \( \text{HNO}_3 = 0.00400 + 0.03400 = 0.03800 \, \text{moles} \)

Total volume \( V_{\text{total}} = V_1 + V_2 = 40.00 \, mL + 170.00 \, mL =
Transcribed Image Text:**Question:** A solution was prepared by mixing \( 40.00 \) mL of \( 0.100 \, M \) \( \text{HNO}_3 \) and \( 170.00 \) mL of \( 0.200 \, M \) \( \text{HNO}_3 \). Calculate the molarity of the final solution of nitric acid. Molarity = ____ \( M \) **Explanation:** To calculate the final molarity of the nitric acid solution, you need to use the formula for combined solutions: \[ C_{\text{final}} = \frac{(C_1 \times V_1) + (C_2 \times V_2)}{V_{\text{total}}} \] Where: - \( C_1 \) and \( C_2 \) are the initial concentrations of the two solutions. - \( V_1 \) and \( V_2 \) are the volumes of the two solutions. - \( V_{\text{total}} \) is the total volume of the final solution. In this example: - \( C_1 = 0.100 \, M \) - \( V_1 = 40.00 \, mL \) - \( C_2 = 0.200 \, M \) - \( V_2 = 170.00 \, mL \) Calculate the moles of \( \text{HNO}_3 \) in each solution: - Moles in first solution \( = C_1 \times V_1 = 0.100 \, M \times 40.00 \times 10^{-3} \, L = 0.00400 \, \text{moles} \) - Moles in second solution \( = C_2 \times V_2 = 0.200 \, M \times 170.00 \times 10^{-3} \, L = 0.03400 \, \text{moles} \) Total moles of \( \text{HNO}_3 = 0.00400 + 0.03400 = 0.03800 \, \text{moles} \) Total volume \( V_{\text{total}} = V_1 + V_2 = 40.00 \, mL + 170.00 \, mL =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Concentration Terms
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY