i=0 - (2²p+A) II (Jurisp + farrak) (foutag + Saurak) 7h) foi+8p+f6i+7h f6i+49 foi+3k P+h foi+7p+ foi+6h, foi+39 foi+2k, X6n-5 = r Now, it follows from Eq. (8) that Czan- X6n-4X6n-7+ X6n-6X6n-7 X6n-6 + X6n-9

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me the steps of determine yellow and information is here step by step. It complete

п-1
feip + f6i-1h
foi-1p+ fei-2h ) \ foi+19 + foik
foi+29 + föi+1k`
hII
X6n-4
%3D
i=0
n-1
foi+4P + fei+3h`
foi+3P + foi+2h ) ( foi-19 + fei-2k,
feig + fei-1k
kII
X6n-3
%3D
i=0
n-1
П
foi+2P + foi+1h\
foi+1P + feih
(foit49 + foi+3k`
föi+39 + f6i+2k,
X6n-2
i=0
n-1
( foi+6P+ fsi+5h\( foi+29 + föi+1k
\ foi+5P + föi+4h )
( foi+aP + foi+3" ) ( fatus4 + foi+ak ,
X6n-1
foi+19 + feik
i=0
n-1
( föi+6q + fsi+5k`
П
föi+3P + foi+2h
i=0
п-1
( foi+8P + f6i+7h
II
fei+7P + fei+oh ) (foi+39 + foi+2k,
2р + h
foi+49 + fei+3k'
).
X6n+1
p+h
i=0
where x-4 = h, x_3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1 = {1,0, 1, 1, 2, 3, 5, 8, ...}.
Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n - 2. That is;
n-2
föi+4p+ föi+3h`
feiq + fei-1k
kII
föi+3P+ f6i+2h
X6n-9
foi-19 + fei-2k,
i=0
( foi+2P + foi+1h (!
П
п-2
föi+49 + fsi+3k`
föi+39 + fei+2k,
X6n-8
fei+1p + feih
i=0
foi+oP + foi+s" ) fo+19 + foik
PII( fei+5P+ f6i+ah
п-2
foi+29 + f6i+1k
X6n-7
i=0
п-2
П
( fei+4P + foi+3h\ (fei+69 + foi+sk`
foi+3P + f6i+2h )foi+59 + foi+ak ,
X6n-6
i=0
п-2
( föi+8P+ foi+7h'
П
foi+7P + f6i+6h
(föi+49 + f6i+3k`
(Foi+39 + foi+2k,
2р + h
X6n-5
= r
p+h
i=0
Now, it follows from Eq.(8) that
X6n-6X6n-7
X6n-4 = x6n-7+
X6n-6 + x6n-9
11
||
||
Transcribed Image Text:п-1 feip + f6i-1h foi-1p+ fei-2h ) \ foi+19 + foik foi+29 + föi+1k` hII X6n-4 %3D i=0 n-1 foi+4P + fei+3h` foi+3P + foi+2h ) ( foi-19 + fei-2k, feig + fei-1k kII X6n-3 %3D i=0 n-1 П foi+2P + foi+1h\ foi+1P + feih (foit49 + foi+3k` föi+39 + f6i+2k, X6n-2 i=0 n-1 ( foi+6P+ fsi+5h\( foi+29 + föi+1k \ foi+5P + föi+4h ) ( foi+aP + foi+3" ) ( fatus4 + foi+ak , X6n-1 foi+19 + feik i=0 n-1 ( föi+6q + fsi+5k` П föi+3P + foi+2h i=0 п-1 ( foi+8P + f6i+7h II fei+7P + fei+oh ) (foi+39 + foi+2k, 2р + h foi+49 + fei+3k' ). X6n+1 p+h i=0 where x-4 = h, x_3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1 = {1,0, 1, 1, 2, 3, 5, 8, ...}. Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n - 2. That is; n-2 föi+4p+ föi+3h` feiq + fei-1k kII föi+3P+ f6i+2h X6n-9 foi-19 + fei-2k, i=0 ( foi+2P + foi+1h (! П п-2 föi+49 + fsi+3k` föi+39 + fei+2k, X6n-8 fei+1p + feih i=0 foi+oP + foi+s" ) fo+19 + foik PII( fei+5P+ f6i+ah п-2 foi+29 + f6i+1k X6n-7 i=0 п-2 П ( fei+4P + foi+3h\ (fei+69 + foi+sk` foi+3P + f6i+2h )foi+59 + foi+ak , X6n-6 i=0 п-2 ( föi+8P+ foi+7h' П foi+7P + f6i+6h (föi+49 + f6i+3k` (Foi+39 + foi+2k, 2р + h X6n-5 = r p+h i=0 Now, it follows from Eq.(8) that X6n-6X6n-7 X6n-4 = x6n-7+ X6n-6 + x6n-9 11 || ||
Brn-1n-2
YIn-1 + 8xn-4'
= 0, 1, ..,
In+1 = aIn-2+
(1)
The following special case of Eq.(1) has been studied
Xn-1In-2
In+1 = In-2 +
(8)
In-1 + In-4'
where the initial conditions r-4, x-3, x-2, x-1,and ro are arbitrary non zero real
numbers.
Theorem 4. Let {In}-4 be a solution of Eq.(8). Then for n = 0,1, 2, ..
п-1
feip + fei-ih
( fei+29 + foi+1k
hII
fo
X6n-4
i-1p+ foi-2h
fei+19 + feik
i=0
п-1
fei+4p+ fei+3h
feig + foi-ik
foi+3P + fei+2h) ( Fei-19 + fei-2k)
n-1 ( fei+2P + Joi+" a39 + foi+2k ,
X6n-3
%3D
i=0
fei+49+ fei+3k
X6n-2
fei+1P + feih
i=0
n-1
foi+24+ fei+1k
foi+19 + feik
foi+6p+ fei+5h
PII
foi+5p + fei+ah
X6n-1
%3D
i=0
n-1
П
(fei+4p+ foi+3h\ ( foi+69 + föi+5k
foi+3p + fei+2h)
X6n
%3D
foi+59 + foi+ak,
i=0
п-1
( föi+8P+ fei+7h
П
foi+7P + foi+sh
foi+49 + f6i+3k
fei+39 + f6i+2k)
2р + h
T6n+1
%3D
p+h
i=0
where x-4 = h, x-3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1
Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n – 2. That is;
100
{1,0, 1, 1, 2, 3, 5, 8, ...}).
п-2
foi+4p + fei+3h
fei+3p + fei+2h) ( foi-19 + fei-2k )
foig + föi-ik
X6n-9
%3D
i=0
п-2
fei+2P + fei+1h( fei+49 + foi+3k
I.
fei+1p + feih
)
X6n-8
%3D
fei+39 + fei+2k,
i=0
п-2
П
( foi+6P + fei+sh\ ( foi+29 + foi+ik
fsi+sP+ fei+ah,
X6n-7
%3D
fei+14 + foik
i=0
п-2
foi+4P + foi+3h
föi+3P + fei+2h ) \foi+59 + foi+ak )
foi+69 + foi+sk`
qII
X6n-6
%3D
i=0
n-2
föi+8P + foi+7h
foi+7P + fei+sh
föi+49 + fei+3k
) Foi+:39 + foi+2k,
2p + h
T6n-5
p+h
i=0
Now, it follows from Eq.(8) that
X6n-6X6n-7
X6n-4 = x6n-7 +
X6n-6 + X6n-9
11
Transcribed Image Text:Brn-1n-2 YIn-1 + 8xn-4' = 0, 1, .., In+1 = aIn-2+ (1) The following special case of Eq.(1) has been studied Xn-1In-2 In+1 = In-2 + (8) In-1 + In-4' where the initial conditions r-4, x-3, x-2, x-1,and ro are arbitrary non zero real numbers. Theorem 4. Let {In}-4 be a solution of Eq.(8). Then for n = 0,1, 2, .. п-1 feip + fei-ih ( fei+29 + foi+1k hII fo X6n-4 i-1p+ foi-2h fei+19 + feik i=0 п-1 fei+4p+ fei+3h feig + foi-ik foi+3P + fei+2h) ( Fei-19 + fei-2k) n-1 ( fei+2P + Joi+" a39 + foi+2k , X6n-3 %3D i=0 fei+49+ fei+3k X6n-2 fei+1P + feih i=0 n-1 foi+24+ fei+1k foi+19 + feik foi+6p+ fei+5h PII foi+5p + fei+ah X6n-1 %3D i=0 n-1 П (fei+4p+ foi+3h\ ( foi+69 + föi+5k foi+3p + fei+2h) X6n %3D foi+59 + foi+ak, i=0 п-1 ( föi+8P+ fei+7h П foi+7P + foi+sh foi+49 + f6i+3k fei+39 + f6i+2k) 2р + h T6n+1 %3D p+h i=0 where x-4 = h, x-3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1 Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds for n – 2. That is; 100 {1,0, 1, 1, 2, 3, 5, 8, ...}). п-2 foi+4p + fei+3h fei+3p + fei+2h) ( foi-19 + fei-2k ) foig + föi-ik X6n-9 %3D i=0 п-2 fei+2P + fei+1h( fei+49 + foi+3k I. fei+1p + feih ) X6n-8 %3D fei+39 + fei+2k, i=0 п-2 П ( foi+6P + fei+sh\ ( foi+29 + foi+ik fsi+sP+ fei+ah, X6n-7 %3D fei+14 + foik i=0 п-2 foi+4P + foi+3h föi+3P + fei+2h ) \foi+59 + foi+ak ) foi+69 + foi+sk` qII X6n-6 %3D i=0 n-2 föi+8P + foi+7h foi+7P + fei+sh föi+49 + fei+3k ) Foi+:39 + foi+2k, 2p + h T6n-5 p+h i=0 Now, it follows from Eq.(8) that X6n-6X6n-7 X6n-4 = x6n-7 + X6n-6 + X6n-9 11
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,