i=0 - (2²p+A) II (Jurisp + farrak) (foutag + Saurak) 7h) foi+8p+f6i+7h f6i+49 foi+3k P+h foi+7p+ foi+6h, foi+39 foi+2k, X6n-5 = r Now, it follows from Eq. (8) that Czan- X6n-4X6n-7+ X6n-6X6n-7 X6n-6 + X6n-9
i=0 - (2²p+A) II (Jurisp + farrak) (foutag + Saurak) 7h) foi+8p+f6i+7h f6i+49 foi+3k P+h foi+7p+ foi+6h, foi+39 foi+2k, X6n-5 = r Now, it follows from Eq. (8) that Czan- X6n-4X6n-7+ X6n-6X6n-7 X6n-6 + X6n-9
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show me the steps of determine yellow and information is here step by step. It complete

Transcribed Image Text:п-1
feip + f6i-1h
foi-1p+ fei-2h ) \ foi+19 + foik
foi+29 + föi+1k`
hII
X6n-4
%3D
i=0
n-1
foi+4P + fei+3h`
foi+3P + foi+2h ) ( foi-19 + fei-2k,
feig + fei-1k
kII
X6n-3
%3D
i=0
n-1
П
foi+2P + foi+1h\
foi+1P + feih
(foit49 + foi+3k`
föi+39 + f6i+2k,
X6n-2
i=0
n-1
( foi+6P+ fsi+5h\( foi+29 + föi+1k
\ foi+5P + föi+4h )
( foi+aP + foi+3" ) ( fatus4 + foi+ak ,
X6n-1
foi+19 + feik
i=0
n-1
( föi+6q + fsi+5k`
П
föi+3P + foi+2h
i=0
п-1
( foi+8P + f6i+7h
II
fei+7P + fei+oh ) (foi+39 + foi+2k,
2р + h
foi+49 + fei+3k'
).
X6n+1
p+h
i=0
where x-4 = h, x_3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1 = {1,0, 1, 1, 2, 3, 5, 8, ...}.
Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n - 2. That is;
n-2
föi+4p+ föi+3h`
feiq + fei-1k
kII
föi+3P+ f6i+2h
X6n-9
foi-19 + fei-2k,
i=0
( foi+2P + foi+1h (!
П
п-2
föi+49 + fsi+3k`
föi+39 + fei+2k,
X6n-8
fei+1p + feih
i=0
foi+oP + foi+s" ) fo+19 + foik
PII( fei+5P+ f6i+ah
п-2
foi+29 + f6i+1k
X6n-7
i=0
п-2
П
( fei+4P + foi+3h\ (fei+69 + foi+sk`
foi+3P + f6i+2h )foi+59 + foi+ak ,
X6n-6
i=0
п-2
( föi+8P+ foi+7h'
П
foi+7P + f6i+6h
(föi+49 + f6i+3k`
(Foi+39 + foi+2k,
2р + h
X6n-5
= r
p+h
i=0
Now, it follows from Eq.(8) that
X6n-6X6n-7
X6n-4 = x6n-7+
X6n-6 + x6n-9
11
||
||

Transcribed Image Text:Brn-1n-2
YIn-1 + 8xn-4'
= 0, 1, ..,
In+1 = aIn-2+
(1)
The following special case of Eq.(1) has been studied
Xn-1In-2
In+1 = In-2 +
(8)
In-1 + In-4'
where the initial conditions r-4, x-3, x-2, x-1,and ro are arbitrary non zero real
numbers.
Theorem 4. Let {In}-4 be a solution of Eq.(8). Then for n = 0,1, 2, ..
п-1
feip + fei-ih
( fei+29 + foi+1k
hII
fo
X6n-4
i-1p+ foi-2h
fei+19 + feik
i=0
п-1
fei+4p+ fei+3h
feig + foi-ik
foi+3P + fei+2h) ( Fei-19 + fei-2k)
n-1 ( fei+2P + Joi+" a39 + foi+2k ,
X6n-3
%3D
i=0
fei+49+ fei+3k
X6n-2
fei+1P + feih
i=0
n-1
foi+24+ fei+1k
foi+19 + feik
foi+6p+ fei+5h
PII
foi+5p + fei+ah
X6n-1
%3D
i=0
n-1
П
(fei+4p+ foi+3h\ ( foi+69 + föi+5k
foi+3p + fei+2h)
X6n
%3D
foi+59 + foi+ak,
i=0
п-1
( föi+8P+ fei+7h
П
foi+7P + foi+sh
foi+49 + f6i+3k
fei+39 + f6i+2k)
2р + h
T6n+1
%3D
p+h
i=0
where x-4 = h, x-3 = k, x-2 = r, x-1 = p, xo = q, {fm}m=-1
Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n – 2. That is;
100
{1,0, 1, 1, 2, 3, 5, 8, ...}).
п-2
foi+4p + fei+3h
fei+3p + fei+2h) ( foi-19 + fei-2k )
foig + föi-ik
X6n-9
%3D
i=0
п-2
fei+2P + fei+1h( fei+49 + foi+3k
I.
fei+1p + feih
)
X6n-8
%3D
fei+39 + fei+2k,
i=0
п-2
П
( foi+6P + fei+sh\ ( foi+29 + foi+ik
fsi+sP+ fei+ah,
X6n-7
%3D
fei+14 + foik
i=0
п-2
foi+4P + foi+3h
föi+3P + fei+2h ) \foi+59 + foi+ak )
foi+69 + foi+sk`
qII
X6n-6
%3D
i=0
n-2
föi+8P + foi+7h
foi+7P + fei+sh
föi+49 + fei+3k
) Foi+:39 + foi+2k,
2p + h
T6n-5
p+h
i=0
Now, it follows from Eq.(8) that
X6n-6X6n-7
X6n-4 = x6n-7 +
X6n-6 + X6n-9
11
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

